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Abstract
We provide an Isabelle/HOL formalization of Bisping and Jansen’s weak spectroscopy game [4],
which can be used to simultaneously characterize and decide a hierarchy of behavioral equiva-
lences for systems with internal behavior. This is valuable for applications in concurrency the-
ory and formal verification where equivalences and distinctions of the “linear-time—branching-
time spectrum” are a recurring topic.

This entry contains a game characterization of most behavioral equivalences from stability-
respecting branching bisimilarity to weak trace equivalence. Technically, the results link dis-
tinguishing sublanguages of Hennessy—Milner logic to winning attacker budgets in an energy
game through an eight-dimensional measurement of syntactic features appearing in formulas.

Overview. This formalization provides theoretical underpinnings of https://equiv.io, a tool to
decide all behavioral equivalences at once. By phrasing equivalences as energy games, one obtains a
uniform way to handle a wide range of equivalences in van Glabbeek’s linear-time—branching-time
spectrum [6, 7]. In particular, we treat systems with silent 7-steps, which usually arise because
of abstraction from internal behavior, for instance, when modeling communication protocols or
distributed systems using transition systems.

This formalization follows Bisping and Jansen’s weak spectroscopy game [4], respectively the
proofs from the arXiv version [3].

e Section 1 provides some basics on transition systems with internal behavior.

e Sections 2 and 3 define a version of Hennessy—Milner logic for systems with internal behavior
and a syntactic metric to select sublanguages of it through coordinates.

e Sections 4 to 6 prove certain coordinates to correspond to weak trace equivalence, n-bisi-
milarity, n-similarity and branching bisimilarity as well as their stable variants. (As the
relationship is established through modal logics, the results can be understood as Hennessy—
Milner theorems [5].)

e Sections 7 to 9 introduce the weak spectroscopy game and prove that winning attacker
energies in the game correspond to coordinates of distinguishing formulas according to the
syntactic expressiveness metric.

The broader project of deciding all equivalences at once is outlined in Bisping’s PhD thesis [2].
There, one can also find more gentle introductions to the topic and to the game-theoretic approach
in general. The energy game approach is due to [1].

Acknowledgments. Several proofs in this document follow pen-and-paper proofs by David N.
Jansen.
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1 Labeled Transition Systems

theory Labeled_Transition_Systems
imports Main
begin

1.1 Base LTS

The locale LTS represents a labeled transition system consisting of a set of states P, a set of actions
>, and a transition relation —C P x ¥ x P. We formalize the sets of states and actions by the
type variables ’s and ’a. An LTS is then determined by the transition relation step.

locale 1lts =
fixes step :: <’s = ’a = ’s = bool> (<_ — _ _> [70,70,70] 80)
begin

One may lift step to sets of states, written as P —S « Q.
abbreviation step_setp (<_ +—S _ _> [70,70,70] 80) where
<P—=SaQ=WqeQ. JpeP.p—~raq AWp€eP.Vg.p—aq—q€Q>
The set of a-derivatives for a set of states P.
definition step_set :: <’s set = ’a = ’s set> where
<step_set Pa={q . dp€P. p— aq}>
The set of possible a-steps for a set of states P is an instance of step lifted to sets of steps.
lemma step_set_is_step_set: <P —S a (step_set P a)>
using step_set_def by force
The lifted step_setp (P —S « Q) is therefore this set Q.

lemma step_set_eq:
assumes <P —S a Q>
shows <Q = step_set P a>
using assms step_set_is_step_set by fastforce

end — of locale 1ts

1.2 Labeled Transition Systems with Silent Steps

We formalize labeled transition systems with silent steps as an extension of ordinary labeled tran-
sition systems with a fixed internal action .

locale lts_tau =

1ts step
for step :: <’s = ’a = ’s = bool> (<_+— _ _> [70,70,70] 80) +
fixes 7 :: ’a
begin

The paper [3] introduces a transition p (o), plif p =5 p/,orifa =7 and p =p. We define
soft_step analogously and provide the notation p —a o p’.

abbreviation soft_step (<_ +—a _ _> [70,70,70] 80) where
<praaq=p—aqV (a=7Ap=q>

inductive silent_reachable :: <’s = ’s = bool> (infix <—»> 80)
where
refl: <p —» p> |
step: <p —» p’’> if <p — 7 p’> and <p’ —» p’’>

If p’ is silent-reachable from p and there is a 7-transition from p’ to p’’ then p’’ is silent reachable
from p.



lemma silent_reachable_append_7: <p —» p’ — p’ — 7 p’’ — p —» p’’>
proof (induct rule: silent_reachable.induct)
case (refl p)
then show 7case using silent_reachable.intros by blast
next
case (step p p’ p’?)
then show 7case using silent_reachable.intros by blast
qed

The relation (=) is transitive.

lemma silent_reachable_trans:
assumes
<p —>» p’>
<p’ — p”>
shows
<p —>» p”>
using assms silent_reachable.intros(2)
by (induct, blast+)

The relation silent_reachable_loopless is a variation of (—) that does not use self-loops.

inductive silent_reachable_loopless :: <’s = ’s = bool> (infix <—»L> 80)
where
<p —»L p> |
<p —»L p’’> if <p +— 7 p’> and <p’ —»L p’’> and <p # p’>

If a state p’ is (—») from p it is also (—»L).

lemma silent_reachable_impl_loopless:
assumes <p —» p’>
shows <p —»L p’>
using assms
proof (induct rule: silent_reachable.induct)
case (refl p)
thus 7case by (rule silent_reachable_loopless.intros(1))
next
case (step p p’ p’’)
thus 7case proof(cases <p = p’>)
case True
thus 7thesis using step.hyps(3) by auto
next
case False
thus 7thesis using step.hyps silent_reachable_loopless.intros(2) by blast
qed
qed

lemma tau_chain_reachabilty:
assumes <Vi < length pp - 1. pp!i — 7 pp!(Suc i)>
shows <Vj < length pp. Vi < j. pp!i —» pp!j>
proof safe
fix j i
assume <j < length pp> <i < j»
thus <pp'i — pp!j>
proof (induct j)
case 0O
then show 7case
using silent_reachable.refl by blast
next
case (Suc j)
then show 7case
proof (induct i)
case 0



then show 7case using assms silent_reachable_append_t7
by (metis Suc_lessD Suc_lessE bot_nat_0.extremum diff_Suc_1)
next
case (Suc i)
then show 7case using silent_reachable.refl assms silent_reachable_append_7
by (metis Suc_lessD Suc_lessE diff_Suc_1 le_SucE)
qed
qed
qed

A state p can reach p’ weakly by performing an a-transition, possibly proceeded and followed by
any number of 7-transitions.

definition weak_step (<_ —»——» _ _> [70, 70, 70] 80) where
<p —#——>»ap’ =if a =1
then p —» p’
else dpl p2. p — pl A pl — a p2 A p2 —» p’>

lemma silent_prepend_weak_step: <p — p’ — p’ —»——» a p’’ — p —»——» a p’’>
unfolding weak_step_def using silent_reachable_trans[of p p’] by fastforce

A sequence of weak_steps from one state p to another p’.

inductive weak_step_sequence :: <’s = ’a list = ’s = bool> (<_ —»——»$ _ _> [70,70,70]
80) where

<p »—>—»$ [] p’> if <p —» p’> |

<p »—>—»$ (adtrt) p’’> if <p —»—>—» a p’> <p’ —»——»$ rt p’’>

lemma weak_step_sequence_trans:
assumes <p —»—>—»$ tr_1 p’> and <p’ —»—>—»$ tr_2 p’’>
shows <p —»—>—»$ (tr_1 @ tr_2) p’’>
using assms weak_step_sequence.intros(2)
proof induct
case (1 p p’)
then show 7case
by (metis weak_step_sequence.simps append_Nil silent_prepend_weak_step silent_reachable_trans)
next
case (2 p ap’ rt p’?)
then show 7case by fastforce
qed

The weak traces of a state are all possible sequences of weak transitions that can be performed.

abbreviation weak_traces :: <’s = ’a list set>
where <weak_traces p = {tr. dp’. p =-»——>»$ tr p’}>

The empty trace is in weak_traces for all states.

lemma empty_trace_allways_weak_trace:
shows <[] € weak_traces p>
using silent_reachable.intros(1l) weak_step_sequence.intros(l) by fastforce

7 can be prepended to any weak trace.

lemma prepend_7_weak_trace:
assumes <tr € weak_traces p>
shows < (7 # tr) € weak_traces p>
using assms silent_reachable.intros(1l) mem_Collect_eq
weak_step_sequence.intros(2) weak_step_def by fastforce

lemma silent_prepend_weak_traces:
assumes
<p —» p’>
<tr € weak_traces p’>



shows
<tr € weak_traces p~>
using assms
proof -
assume <p —» p’>
and <tr € weak_traces p’>
hence <dp’’. p’ —»—>—»$ tr p’’> by auto
then obtain p’’ where <p’ —»——»$ tr p’’> by auto
from <p’ —»——»$ tr p’’>
and <p —» p’>
have <p —»——»$ tr p’’>
by (metis append_self_conv2 weak_step_sequence.intros(l) weak_step_sequence_trans)
hence <dp’’. p —»——»$ tr p’’> by auto
then show <tr € weak_traces p>
by blast
qed

If there is an a-transition from p to p’, and p’ has a weak trace tr, then the sequence (a # tr) is
a valid (weak) trace of p.

lemma step_prepend_weak_traces:
assumes
<p —~ « p’>
<tr € weak_traces p’>
shows
<(a # tr) € weak_traces p>
using assms
proof -
from <tr € weak_traces p’>
have <dp’’. p’ —»——»$ tr p’’> by auto
then obtain p’’ where <p’ —»——»$ tr p’’> by auto
with <p — «a p’>
have <p —»—>—»$ (o # tr) p’’>
by (metis 1lts_tau.silent_reachable.intros(l) 1lts_tau.silent_reachable_append_7
lts_tau.weak_step_def 1lts_tau.weak_step_sequence.intros(2))
then have <Jdp’’. p —»——»$ (o # tr) p’’> by auto
then show <(a # tr) € weak_traces p> by auto
qed

A state is weakly trace pre-ordered to another other, weakly_trace_preordered denoted by <WT if
all its traces can also be observed from the second process.

definition weakly_trace_preordered (infix <<WT> 60) where
<p SWT q = weak_traces p C weak_traces g>

definition weakly_trace_equivalent (infix <~WT> 60) where
<p ~WT q =p SWT g A q SWT p>

Just like step_setp, one can lift (=) to sets of states.

abbreviation silent_reachable_setp (infix <—»S> 80) where
<P »S P = ((Vp’ € PP. dJp € P. p = p’) A (Yp € P. Vp’. p = p> — p’ € P’))>

definition silent_reachable_set :: <’s set = ’s set> where
<silent_reachable_set P = { q . dp € P. p —» q }>

lemma sreachable_set_is_sreachable: <P —»S (silent_reachable_set P)>
using silent_reachable_set_def by auto

lemma sreachable_set_eq:
assumes <P —»S Q>
shows <Q = silent_reachable_set P>
using sreachable_set_is_sreachable assms by fastforce



We likewise lift soft_step to sets of states.

abbreviation soft_step_setp (<_ —aS _ _> [70,70,70] 80) where
<P—~aSaQ=(qeQ dJpeP.p—raaq A(Wp€eP. Vg praaq—qc€cR>

definition soft_step_set :: <’s set = ’a = ’s set> where
<soft_step_set Pa={q . dp € P. p —a aq }>

lemma soft_step_set_is_soft_step_set:
<P —aS «a (soft_step_set P a)>
using soft_step_set_def by auto

lemma exactly_one_soft_step_set:
<31Q. P —aS a Q>
proof -
from soft_step_set_is_soft_step_set
have <P —aS o (soft_step_set P «)>
and <AQ. P —aS a Q = Q = (soft_step_set P a)>
by fastforce+
show <31!Q. P —aS a Q>
proof
from <P —aS a (soft_step_set P a)>
show <P +—aS o (soft_step_set P a)>
next
from <AQ. P —aS o Q = Q
show <AQ. P —aS a @ = Q
qed
qed

(soft_step_set P «)>
(soft_step_set P a)>

lemma soft_step_set_eq:
assumes <P —aS «a Q>
shows <Q = soft_step_set P a>
using exactly_one_soft_step_set soft_step_set_is_soft_step_set assms
by fastforce

A state is stable if it cannot make any further internal steps.

abbreviation <stable_state p = Vp’. —(p — 7 p’)>

lemma stable_state_stable:
assumes <stable_state p> <p —» p’>
shows <p = p’>
using assms(2,1) by (cases, blast+)

definition stability_respecting :: <(’s = ’s = bool) = bool> where
<stability_respecting R =V p q. R p g A stable_state p —
(3d9°. 9 = q@” AR p q’ A stable_state q’)>

end — of locale 1ts_tau

end

1.3 Modal Logics on LTS

We here supply abstract definitions that would work for all modal logics one might define over an
LTS. In particular, this contains mechanisms to derive equivalences from sublogics.

theory LTS_Semantics
imports
Labeled_Transition_Systems
begin



locale lts_semantics = 1lts step
for step ::

<’s = ’a = ’s = bool> (<_ —
fixes models :: <’s =
begin

_ _> [70,70,70] 80) +
’formula = bool>

definition entails

: <’formula = ’formula = bool> where
entails_def [simp]: <entails ¢l @r

definition logical_eq :: <’formula = ’formula = bool> where
logical_eq_def [simp]: <logical_eq ¢l ¢r =
Formula implication is a pre-order.

(Vp. (models p pl) — (models p ¢r))>

entails ¢l ¢r A entails ¢r ¢l>

lemma entails_preord: <reflp (entails)>

<transp (entails)>
by (simp add: reflpl transp_def)+

lemma eq_equiv: <equivp logical_eq~>
using equivpl reflpl sympl transpl

unfolding logical_eq_def entails_def
by (smt (verit, del_insts))

Formula equivalence is a biimplication on the models predicate.
lemma eq_equality[simp]: < (logical_eq ¢l ¢r) = (Vp. models p ¢l <— models p pr)>
by force

lemma logical_eqI[intro]:
assumes

</As. models s ¢l = models s ¢r>
</A\s. models s pr = models s pl>
shows

<logical_eq ¢l ¢r>
using assms by auto

definition distinguishes :: <’formula = ’s = ’s = bool> where
distinguishes_def [simp]:
<distinguishes ¢ p q = models p ¢ A —(models q ¢)>

definition distinguishes_from ::
distinguishes_from_def [simp] :

<’formula =
<distinguishes_from ¢ p Q

’s = ’s set = bool> where

lemma distinction_unlifting:
assumes

models p ¢ A (Vq € Q. —(models q ¢))>

<distinguishes_from ¢ p Q>
shows

<VqeQ. distinguishes ¢ p q>
using assms by simp

lemma no_distinction_fom_self:
assumes

<distinguishes ¢ p p’>
shows

<False>

using assms by simp

lemma dist_equal_dist:
assumes <logical_eq ¢l ¢pr>

and <distinguishes ¢l p gq>

shows <distinguishes pr p q>
using assms

by auto



abbreviation model_set :: <’formula = ’s set> where
<model_set ¢ = {p. models p ¢}>

1.4 Preorders and Equivalences on Processes Derived from Formula Sets

A set of formulas pre-orders two processes p and q if, for all formulas in this set, the fact that p
satisfies a formula means that q must also satisfy this formula.

definition preordered :: <’formula set = ’s = ’s = bool> where
preordered_def [simp] :
<preordered ¢ws p q = V¢ € ¢s. models p ¢ — models q >

If a set of formulas pre-orders two processes p and q, then no formula in that set may distinguish
p from q.

lemma preordered_no_distinction:
<preordered ws p q = (Vp € ps. —(distinguishes ¢ p q))>
by simp

A formula set derived pre-order is a pre-order.

lemma preordered_preord:
<reflp (preordered @s)>
<transp (preordered gs) >
unfolding reflp_def transp_def by auto

A set of formulas equates two processes if it pre-orders these two processes in both directions.

definition equivalent :: <’formula set = ’s = ’s = bool> where
equivalent_def [simp] :
<equivalent ps p q = preordered ¢s p q A preordered s q p>

If a set of formulas equates two processes, then no formula in that set may distinguish them in any
direction.

lemma equivalent_no_distinction: <equivalent s p q
= (V¢ € ps. —(distinguishes ¢ p q) A —(distinguishes ¢ q p))>
by auto

A formula-set-derived equivalence is an equivalence.

lemma equivalent_equiv: <equivp (equivalent ¢s)>
proof (rule equivpl)
show <reflp (equivalent ¢s)>
by (simp add: reflpI)
show <symp (equivalent ¢s)>
unfolding equivalent_no_distinction symp_def
by auto
show <transp (equivalent ¢s)>
unfolding transp_def equivalent_def preordered_def

by blast
qed
end — of context 1ts_semantics
end
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2 Hennessy—Milner Logic for Stability-Respecting Branch-
ing Bisimilarity
theory HML_SRBB

imports LTS_Semantics
begin

This section describes a variant of Hennessy—Milner logic that characterizes stability-respecting
branching bisimilarity (SRBB).

The following mutually-recursive datatype family describes a grammar of HML_SRBB formulas.

datatype
(Pact, ’i) hml_srbb =
TT |
Internal < (’act, ’i) hml_srbb_inner> |
ImmConj <’i set> <’i = (Pact, ’i) hml_srbb_conjunct>
and
(’act, ’i) hml_srbb_inner =
Obs ’act <(’act, ’i) hml_srbb> |
Conj <’i set> <’i = (’act, ’i) hml_srbb_conjunct> |
StableConj <’i set> <’i = (’act, ’i) hml_srbb_conjunct> |
BranchConj ’act <(’act, ’i) hml_srbb>
<’i set> <’i = (’act, ’i) hml_srbb_conjunct>
and
(Pact, ’i) hml_srbb_conjunct =
Pos <(Pact, ’i) hml_srbb_inner> |
Neg <(’act, ’i) hml_srbb_inner>

The constructors correspond to more conventional notation of HML as follows:

e hml_srbb (members usually referred to as ¢):

— TT encodes T
— Internal x encodes (g)x

— ImmConj I s encodes A\, vs(i)
e hml_srbb_inner (usually x):

— Obs a ¢ encodes ()¢

Conj I ts encodes A, ;vs(i)
StableConj I s encodes ~(7)T A A, 9s(i)
BranchConj « ¢ I ts encodes (o) A A\, ¥s(i)

e hml_srbb_conjunct (usually v):

— Pos x encodes (e)x

— Neg x encodes —{g)x

2.1 Semantics of HMLgrpg Formulas

This section describes how semantic meaning is assigned to HMLggrpp formulas in the context of
a LTS. We define what it means for a process p to satisfy an HMLgrpp formula ¢, written as p
I=SRBB (.

context lts_tau
begin

11



primrec
hml_srbb_models :: <’s = (’a, ’s) hml_srbb = bool> (infixl <|=SRBB> 60)

and hml_srbb_inner_models :: <’s = (’a, ’s) hml_srbb_inner = bool>
and hml_srbb_conjunct_models :: <’s = (’a, ’s) hml_srbb_conjunct = bool> where
<hml_srbb_models state TT =

True> |

<hml_srbb_models state (Internal y) =

(dp’. state —» p’ A (hml_srbb_inner_models p’ x))> |
<hml_srbb_models state (ImmConj I v¢s) =

(Vi€I. hml_srbb_conjunct_models state (is i))> |

<hml_srbb_inner_models state (Obs a ¢) =

((dp’. state — a p’ A hml_srbb_models p’ ¢) V a = 7 A hml_srbb_models state ¢)> |
<hml_srbb_inner_models state (Conj I vs) =

(Vi€I. hml_srbb_conjunct_models state (¢s i))> |
<hml_srbb_inner_models state (StableConj I %s) =

((Fp’. state — 7 p’) A (Vi€l. hml_srbb_conjunct_models state (¢s 1)))> |
<hml_srbb_inner_models state (BranchConj a ¢ I ¢s) =

(((3p’. state — a p’ A hml_srbb_models p’ ¢) V a = 7 A hml_srbb_models state )

A (Vi€I. hml_srbb_conjunct_models state (¢s 1)))> |

<hml_srbb_conjunct_models state (Pos x) =

(dp’. state — p’ A hml_srbb_inner_models p’ x)> |
<hml_srbb_conjunct_models state (Neg x) =

(3p’. state —» p’ A hml_srbb_inner_models p’ x)>

sublocale 1lts_semantics <step”> <hml_srbb_models>
sublocale hml_srbb_inner: lts_semantics where models = hml_srbb_inner_models .
sublocale hml_srbb_conj: lts_semantics where models = hml_srbb_conjunct_models .

2.2 Distinguishing Formulas

lemma verum_never_distinguishes:
<— distinguishes TT p q~>
by simp

If A\;c;¥s(i) distinguishes p from q, then there must be at least one conjunct in this conjunction
that distinguishes p from q.

lemma srbb_dist_imm_conjunction_implies_dist_conjunct:
assumes <distinguishes (ImmConj I ¢s) p q>
shows <3i€I. hml_srbb_conj.distinguishes (s i) p q>
using assms by auto

lemma srbb_dist_conjunction_implies_dist_conjunct:
assumes <hml_srbb_inner.distinguishes (Conj I s) p q>
shows <3i€I. hml_srbb_conj.distinguishes (¢/s i) p q>
using assms by auto

lemma srbb_dist_branch_conjunction_implies_dist_conjunct_or_branch:
assumes
<hml_srbb_inner.distinguishes (BranchConj o ¢ I 9s) p q>
shows
<(di€I. hml_srbb_conj.distinguishes (¢¥s i) p )
V hml_srbb_inner.distinguishes (Obs a ¢) p q>
using assms by force

lemma srbb_dist_conjunct_implies_dist_imm_conjunction:
assumes
<iel>
<hml_srbb_conj.distinguishes (¢s i) p q>

12



<Vi€I. hml_srbb_conjunct_models p (¢s 1i)>
shows

<distinguishes (ImmConj I s) p q>
using assms by auto

lemma srbb_dist_conjunct_implies_dist_conjunction:

assumes

<iel»

<hml_srbb_conj.distinguishes (s i) p q>

<Vi€I. hml_srbb_conjunct_models p (¢s 1i)>
shows

<hml_srbb_inner.distinguishes (Conj I ¢s) p q>
using assms by auto

lemma srbb_dist_conjunct_or_branch_implies_dist_branch_conjunction:

assumes

<Vi € I. hml_srbb_conjunct_models p (¢s i)>

<hml_srbb_inner_models p (0bs a ¢)>

<(i€I A hml_srbb_conj.distinguishes (¢s i) p q)

V (hml_srbb_inner.distinguishes (Obs o ¢) p q)>

shows

<hml_srbb_inner.distinguishes (BranchConj a ¢ I 9s) p q>
using assms by force

2.3 HMLsgrgg Implication and Equivalence

abbreviation hml_srbb_impl
<(’a, ’s) hml_srbb = (’a, ’s) hml_srbb = bool> (infixr <=> 70)
where
<hml_srbb_impl = entails>

abbreviation
hml_srbb_impl_inner
<(’a, ’s) hml_srbb_inner = (’a, ’s) hml_srbb_inner = bool>
(infix <x=> 70)
where
<(x=) = hml_srbb_inner.entails>

abbreviation
hml_srbb_impl_conjunct
<(’a, ’s) hml_srbb_conjunct = (’a, ’s) hml_srbb_conjunct = bool>
(infix <¥=> 70)
where
<(¥)=) = hml_srbb_conj.entails>

abbreviation
hml_srbb_eq
<(’a, ’s) hml_srbb = (’a, ’s) hml_srbb = bool>
(infix <&srbb=> 70)
where
< (&srbb=) = logical_eq>

abbreviation
hml_srbb_eq_inner
<(’a, ’s) hml_srbb_inner = (’a, ’s) hml_srbb_inner = bool>
(infix <&x=> 70)
where
<(&x=) = hml_srbb_inner.logical_eq>

abbreviation
hml_srbb_eq_conjunct
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<(’a, ’s) hml_srbb_conjunct = (’a, ’s) hml_srbb_conjunct = bool>
(infix <&YP=> 70)
where
<(&9Y=) = hml_srbb_conj.logical_eq>

2.4 Substitution and Congruence

lemma srbb_internal_subst:
assumes
X1 &x= xr>
<@ &srbb= (Internal x1)>
shows
<@ &srbb= (Internal xr)>
using assms by force

lemma internal_srbb_cong:
assumes <xl &x= xr>
shows < (Internal x1l) &srbb= (Internal xr)»>
using assms by auto

lemma immconj_cong:
assumes
<ipsl ¢ I = ysr ¢ I>
<ysl s EYP= Psr s>
shows
<ImmConj (I U {s}) ¥sl &srbb= ImmConj (I U {s}) tsr>
using assms
by (auto) (metis (mono_tags, lifting) image_iff)+

lemma obs_srbb_cong:
assumes <@l <=srbb= pr>
shows <(Obs a ¢l) &x= (0bs «a ¢r)>
using assms by auto

2.5 Trivial and Equivalent Formulas

lemma empty_conj_trivial[simp]:
<state =SRBB ImmConj {} vs>
<hml_srbb_inner_models state (Conj {} ¢s)>
<hml_srbb_inner_models state (Obs 7 TT)>
by simp+

lemma empty_branch_conj_tau:
<hml_srbb_inner_models state (BranchConj 7 TT {} ¢s)>
by auto

lemma stable_conj_parts:
assumes
<hml_srbb_inner_models p (StableConj I W¥)>
<i € I>
shows
<hml_srbb_conjunct_models p (V¥ i)>
using assms by auto

lemma branching_conj_parts:
assumes
<hml_srbb_inner_models p (BranchConj a ¢ I W¥)>
<i € I»>
shows
<hml_srbb_conjunct_models p (¥ i)>
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using assms by auto

lemma branching_conj_obs:
assumes <hml_srbb_inner_models p (BranchConj a ¢ I ¥)>
shows <hml_srbb_inner_models p (Obs a ¢)>
using assms by auto

lemma srbb_obs_7_is_xTT: <0bs 7 TT &x= Conj {} s>
by simp

lemma srbb_obs_is_empty_branch_conj: <0Obs a ¢ &x= BranchConj a ¢ {} s>
by auto

lemma srbb_TT_is_xTT: <TT <srbb= Internal (Conj {} ¥s)>
using lts_tau.refl by force

lemma srbb_TT_is_empty_conj: <TT <&srbb= ImmConj {} s>
by simp

Positive conjuncts in stable conjunctions can be replaced by negative ones.

lemma srbb_stable_Neg_normalizable:
assumes
<i € I> <¥V i = Pos x>
<P’ = U(i:= Neg (StableConj {left} (A_. Neg x)))>
shows
<Internal (StableConj I W) <&srbb=> Internal (StableConj I W’)>
proof (rule logical_eql)
fix p
assume <p =SRBB Internal (StableConj I W¥)>
then obtain p’ where p’_spec: <p —» p’> <hml_srbb_inner_models p’ (StableConj I ¥)> by auto
hence <stable_state p’> by auto
from p’_spec have <dp’’. p’ —» p’’ A hml_srbb_inner_models p’’ x>
using assms(1,2) by auto
with <stable_state p’> have <hml_srbb_inner_models p’ x>
using stable_state_stable by blast
hence <hml_srbb_conjunct_models p’ (Neg (StableConj {left} (A_. Neg x)))>
using <stable_state p’> stable_state_stable by (auto, blast)
hence <hml_srbb_inner_models p’ (StableConj I W’)>
unfolding assms(3) using p’_spec by auto
thus <p [=SRBB hml_srbb.Internal (StableConj I ¥’)>
using <p —» p’> by auto
next
fix p
assume <p [=SRBB Internal (StableConj I ¥’)>
then obtain p’ where p’_spec: <p —» p’> <hml_srbb_inner_models p’ (StableConj I ¥’)> by
auto
hence <stable_state p’> by auto
from p’_spec(2) have other_conjuncts: <Vj€I. i # j — hml_srbb_conjunct_models p’ (¥ j)»>
using assms stable_conj_parts fun_upd_apply by metis
from p’_spec(2) have <hml_srbb_conjunct_models p’ (¥’ i)>
using assms(1) stable_conj_parts by blast
hence <hml_srbb_conjunct_models p’ (Neg (StableConj {left} (A_. Neg x)))>
unfolding assms(3) by auto
with <stable_state p’> have <hml_srbb_inner_models p’ x>
using stable_state_stable by (auto, metis silent_reachable.simps)
then have <hml_srbb_conjunct_models p’ (Pos x)>
using lts_tau.refl by fastforce
hence <hml_srbb_inner_models p’ (StableConj I W)>
using p’_spec assms other_conjuncts by auto
thus <p [=SRBB hml_srbb.Internal (StableConj I ¥)>
using p’_spec(l) by auto
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qed

All positive conjuncts in stable conjunctions can be replaced by negative ones at once.

lemma srbb_stable_Neg_normalizable_set:
assumes
<P’ = (Ai. case (¥ i) of
Pos x = Neg (StableConj {left} (A_. Neg x)) |
Neg x = Neg x)>
shows
<Internal (StableConj I V) &srbb= Internal (StableConj I ¥’)>
proof (rule logical_eql)
fix p
assume <p [=SRBB Internal (StableConj I W)>
then obtain p’ where p’_spec: <p —» p’> <hml_srbb_inner_models p’ (StableConj I W¥)> by auto
hence <stable_state p’> by auto
from p’_spec have
<Vx i. i€I A ¥ i = Pos x — (dp’’. p’ —» p’’ A hml_srbb_inner_models p’’ x)>
by fastforce
with <stable_state p’> have <Vyx i. i€I A ¥ i = Pos x — hml_srbb_inner_models p’ x>
using stable_state_stable by blast
hence pos_rewrite: <Vyx i. i€I A ¥ i = Pos x —
hml_srbb_conjunct_models p’ (Neg (StableConj {left} (A_. Neg x)))>
using <stable_state p’> stable_state_stable by (auto, blast)
hence <hml_srbb_inner_models p’ (StableConj I W?’)>
unfolding assms using p’_spec
by (auto, metis (no_types, lifting) hml_srbb_conjunct.exhaust hml_srbb_conjunct.simps(5,6)
pos_rewrite)
thus <p [=SRBB Internal (StableConj I ¥’)>
using <p —» p’> by auto
next
fix p
assume <p [=SRBB Internal (StableConj I W¥’)>
then obtain p’ where p’_spec: <p —» p’> <hml_srbb_inner_models p’ (StableConj I ¥’)> by
auto
hence <stable_state p’> by auto
from p’_spec(2) have other_conjuncts:
<Vx i. i€I A ¥ i = Neg x — hml_srbb_conjunct_models p’ (¥ i)>
using assms stable_conj_parts by (metis hml_srbb_conjunct.simps(6))
from p’_spec(2) have <Vy i. i€l A ¥ i = Pos x — hml_srbb_conjunct_models p’ (¥’ i)>
using assms(1) stable_conj_parts by blast
hence <Vyx i. i€I A ¥ i = Pos x —
hml_srbb_conjunct_models p’ (Neg (StableConj {left} (A_. Neg x)))>
unfolding assms by auto
with <stable_state p’> have <Vy i. i€I A ¥ i = Pos x — hml_srbb_inner_models p’ x>
using stable_state_stable by (auto, metis silent_reachable.simps)
then have pos_conjuncts:
<Vx i. i€I A ¥ i = Pos x —hml_srbb_conjunct_models p’ (Pos x)>
using hml_srbb_conjunct_models.simps(1l) silent_reachable.simps by blast
hence <hml_srbb_inner_models p’ (StableConj I W)>
using p’_spec assms other_conjuncts
by (auto, metis other_conjuncts pos_conjuncts hml_srbb_conjunct.exhaust)
thus <p [=SRBB Internal (StableConj I W¥)>
using p’_spec(l) by auto
qed

definition conjunctify_distinctions
<(’s = (’a, ’s) hml_srbb) = ’s = (’s = (’a, ’s) hml_srbb_conjunct) > where
<conjunctify_distinctions ® p = Aq.
case (P q) of
TT = undefined
| Internal x = Pos x
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| ImmConj I ¥ = ¥ (SOME i. i€I A hml_srbb_conj.distinguishes (¥ i) p q)>

lemma distinction_conjunctification:
assumes
<Vq€Il. distinguishes (P q) p g>
shows
<Vq€I. hml_srbb_conj.distinguishes ((conjunctify_distinctions ® p) q) p g’
unfolding conjunctify_distinctions_def
proof
fix q
assume q_I: <q€Il>
show <hml_srbb_conj.distinguishes
(case ® q of hml_srbb.Internal x = hml_srbb_conjunct.Pos x
| ImmConj I ¥ = ¥ (SOME i. i € I A hml_srbb_conj.distinguishes (¥ i) p q))
pa’
proof (cases <® qg>)
case TT
then show 7thesis using assms q_I by fastforce
next
case (Internal x)
then show 7thesis using assms q_I by auto
next
case (ImmConj J W)
then have <3i € J. hml_srbb_conj.distinguishes (¥ i) p g>
using assms g_I by auto
then show 7thesis
by (metis (mono_tags, lifting) ImmConj hml_srbb.simps(11) someI)
qed
qed

lemma distinction_combination:

fixes p q
defines

<Qa = {q°. q = q° A (Pp. distinguishes ¢ p q’)}>
assumes

<p —a «a p’>

<Vq’€ Qa.

Vq’’. q’ —a a q’’ — (distinguishes (® q’’) p’ q’’)>

shows

<Vq’€Qa.

hml_srbb_inner.distinguishes (Obs a (ImmConj {q’’. 3q’’’€Qu. q’’’ —a « q’’}
(conjunctify_distinctions ¢ p’))) p q’>
proof -
have <Vq’€ Qa. Vq’’€{q’’. q’ —a o q’’}.
hml_srbb_conj.distinguishes ((conjunctify_distinctions ¢ p’) q’’) p’ q’’>
proof clarify
fiX q) q))
assume <q’ € Qa> <q’ —a «a q’’>
thus <hml_srbb_conj.distinguishes (conjunctify_distinctions ® p’ q’’) p’ q’’>
using distinction_conjunctification assms(3)
by (metis mem_Collect_eq)
qed
hence <Vq’€ Qa. Vq’’€{q’’. dql1’€Qa. q1’ —a a q’’}.
hml_srbb_conj.distinguishes ((conjunctify_distinctions ® p’) q’’) p’ q’’> by blast
hence <Vq’€ Qa. Vq’’. q’ —a a q’°
— distinguishes (ImmConj {q’’. 3q1’€Qe. ql’ +—a o q’’}
(conjunctify_distinctions ® p’)) p’ q’’> by auto
thus <Vq’€Qo.
hml_srbb_inner.distinguishes (Obs a (ImmConj {q’’. 3q’’’€Qa. q’’’ +—a «a q’’}
(conjunctify_distinctions ¢ p’))) p q’>
by (auto) (metis assms(2))+
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qed

definition conjunctify_distinctions_dual ::
<(’s = (’a, ’s) hml_srbb) = ’s = (’s = (’a, ’s) hml_srbb_conjunct) > where
<conjunctify_distinctions_dual ® p = Aq.
case (P q) of
TT = undefined
| Internal y = Neg X
| ImmConj I ¥ =
(case ¥ (SOME i. i€I A hml_srbb_conj.distinguishes (¥ i) q p) of
Pos x = Neg x | Neg x = Pos x)>

lemma dual_conjunct:
assumes
<hml_srbb_conj.distinguishes ) p q>
shows
<hml_srbb_conj.distinguishes (case 1 of
hml_srbb_conjunct.Pos x = hml_srbb_conjunct.Neg X
| hml_srbb_conjunct.Neg x = hml_srbb_conjunct.Pos x) q p>
using assms
by (cases ¢, auto)

lemma distinction_conjunctification_dual:
assumes
<Vq€l. distinguishes (® q) q p>
shows
<Vq€I. hml_srbb_conj.distinguishes (conjunctify_distinctions_dual ¢ p q) p q>
unfolding conjunctify_distinctions_dual_def
proof
fix q
assume q_I: <q€I>
show <hml_srbb_conj.distinguishes
(case ® q of hml_srbb.Internal x = hml_srbb_conjunct.Neg x
| ImmConj I ¥ =
( case W (SOME i. i € I A hml_srbb_conj.distinguishes (¥ i) q p) of
hml_srbb_conjunct.Pos x = hml_srbb_conjunct.Neg x
| hml_srbb_conjunct.Neg x = hml_srbb_conjunct.Pos x))

p g’
proof (cases <® g>)
case TT

then show 7thesis using assms q_I by fastforce
next
case (Internal x)
then show 7thesis using assms q_I by auto
next
case (ImmConj J W)
then have <3i € J. hml_srbb_conj.distinguishes (¥ i) q p>
using assms g_I by auto
hence <hml_srbb_conj.distinguishes (case U
(SOME i. i € J A hml_srbb_conj.distinguishes (¥ i) q p) of
hml_srbb_conjunct.Pos x = hml_srbb_conjunct.Neg x
| hml_srbb_conjunct.Neg x = hml_srbb_conjunct.Pos x) p q>
by (metis (no_types, lifting) dual_conjunct somel_ex)
then show 7thesis unfolding ImmConj by auto
qed
qed

lemma distinction_conjunctification_two_way:
fixes & p I
defines
<conjfy q =
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(if distinguishes (® q) p q
then conjunctify_distinctions &
else conjunctify_distinctions_dual ®) p q>
assumes
<Vq€Il. distinguishes (® q) p q V distinguishes (® q) q p>
shows
<Vq€I. hml_srbb_conj.distinguishes (conjfy q) p q>
proof safe
fix q
assume <q € I>
then consider <distinguishes (® q) p g>
| <distinguishes (® q) q p> using assms by blast
thus <hml_srbb_conj.distinguishes (conjfy q) p q°>
proof cases
case 1
then show 7thesis using distinction_conjunctification conjfy_def
by (smt (verit) singleton_iff)
next
case 2
then show 7thesis using distinction_conjunctification_dual singleton_iff
unfolding distinguishes_def conjfy_def
by (smt (verit, ccfv_threshold))
qed
qed

end — of 1ts_tau

end
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3 Expressiveness Prices

theory Energy
imports "HOL-Library.Extended_Nat"
begin

We intend to work on eight-dimensional vectors in an energy game. The dimensions will encode
expressiveness prices to HMLgrpp formulas. This price is supposed to capture syntactic features
needed to describe a certain property and will later be used to select sublogics of specific expres-
siveness to characterize behavioural equivalences.

The eight dimensions are intended to measure the following properties of formulas:

1. Modal depth (of observations (), (a)),

2. Depth of branching conjunctions (with one observation clause not starting with (g)),
Depth of stable conjunctions (that do enforce stability by a —(7)T-conjunct),

Depth of unstable conjunctions (that do not enforce stability by a —(7) T-conjunct),
Depth of immediate conjunctions (that are not preceded by (g)),

Maximal modal depth of positive clauses in conjunctions,

Maximal modal depth of negative clauses in conjunctions,

® N o oos W

Depth of negations

datatype energy =
E (modal_depth: <enat>) (br_conj_depth: <enat>) (conj_depth: <enat>)
(st_conj_depth: <enat>) (imm_conj_depth: <enat>)
(pos_conjuncts: <enat>) (neg_conjuncts: <enat>) (neg_depth: <enat>)

3.1 Comparing and Subtracting Energies

In order to define subtraction on energies, we first lift the orderings < and < from enat to energy.

instantiation energy :: order begin

definition <el < e2 =
(case el of E al bl cl1 dl el f1 g1 hl = (
case e2 of E a2 b2 c2 d2 e2 f2 g2 h2 =
(al < a2 A bl <2 Acl <c2Adl <d2Ael <e2Afl<f2Ag1<g2Ahl <h2)
))>

definition <(x::emergy) <y = (x <y A -y < x)>

instance proof
fix el e2 e3 :: energy
show <el < el> unfolding less_eq_energy_def by (simp add: energy.case_eq_if)
show <el < e2 = e2 < e3 = el < e3> unfolding less_eq_energy_def
by (smt (z3) energy.case_eq_if order_trans)
show <el < e2 = (el < e2 A = e2 < el)> using less_energy_def .
show <el < e2 = e2 < el = el = e2> unfolding less_eq_energy_def
by (smt (z3) energy.case_eq_if energy.expand nle_le)
qed

lemma leq_components [simp] :
shows <el < e2 =
(modal_depth el < modal_depth e2 A br_conj_depth el < br_conj_depth e2
A conj_depth el < conj_depth e2 A st_conj_depth el < st_conj_depth e2
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A imm_conj_depth el < imm_conj_depth e2 A pos_conjuncts el < pos_conjuncts e2
A neg_conjuncts el < neg_conjuncts e2 A neg_depth el < neg_depth e2)>
unfolding less_eq_energy_def by (simp add: energy.case_eq_if)

lemma energy_leq_cases:

assumes
<modal_depth el < modal_depth e2> <br_conj_depth el < br_conj_depth e2>
<conj_depth el < conj_depth e2> <st_conj_depth el < st_conj_depth e2>
<imm_conj_depth el < imm_conj_depth e2> <pos_conjuncts el < pos_conjuncts e2>
<neg_conjuncts el < neg_conjuncts e2> <neg_depth el < neg_depth e2>

shows
<el < e2>

using assms unfolding leq_components by blast

end
abbreviation somewhere_larger where <somewhere_larger el e2 = —(el > e2)>

lemma somewhere_larger_eq:

assumes
<somewhere_larger el e2>

shows
<modal_depth el < modal_depth e2 V br_conj_depth el < br_conj_depth e2
V conj_depth el < conj_depth e2 V st_conj_depth el < st_conj_depth e2
V imm_conj_depth el < imm_conj_depth e2 V pos_conjuncts el < pos_conjuncts e2
V neg_conjuncts el < neg_conjuncts e2 V neg_depth el < neg_depth e2>

by (smt (z3) assms energy.case_eq_if less_eq_energy_def linorder_le_less_linear)

instantiation energy :: minus
begin
definition minus_energy_def [simp]: <el - e2 = E

((modal_depth el) - (modal_depth e2))
((br_conj_depth el) - (br_conj_depth e2))
((conj_depth el) - (conj_depth e2))
((st_conj_depth el) - (st_conj_depth e2))
((imm_conj_depth el) - (imm_conj_depth e2))
((pos_conjuncts el) - (pos_conjuncts e2))
((neg_conjuncts el) - (neg_conjuncts e2))
((neg_depth el) - (neg_depth e2))>

instance ..
end

Some lemmas to ease the manipulation of expressions using subtraction on energies.

lemma energy_minus [simp]:
shows <E al bl cl1 dl el f1 gl hl - E a2 b2 c2 d2 e2 £2 g2 h2
=E (a1l - a2) (bl - b2) (cl - c2) (d1 - d2)
(el - e2) (f1 - £2) (g1 - g2) (h1 - h2)>
unfolding minus_energy_def somewhere_larger_eq by simp

lemma minus_component_leq:

assumes
<s < x>
<x < y>

shows
<modal_depth (x - s) < modal_depth (y - s)>
<br_conj_depth (x - s) < br_conj_depth (y - s)>
<conj_depth (x - s) < conj_depth (y - s)>
<st_conj_depth (x - s) < st_conj_depth (y - s)>
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<imm_conj_depth (x - s) < imm_conj_depth (y - s)>
<pos_conjuncts (x - s) < pos_conjuncts (y - s)>
<neg_conjuncts (x - s) < neg_conjuncts (y - s)>
<neg_depth (x - s) < neg_depth (y - s)>
using assms by (simp_all) (metis add.commute add_diff_assoc_enat le_iff_add)+

lemma enat_diff_mono:
assumes <(i::emat) < j>
shows <i - k < j - k>
proof (cases i)
case (enat iN)
show 7thesis
proof (cases j)
case (enat jN)
then show 7thesis
using assms enat_ile by (cases k, fastforce+)
next
case infinity
then show 7thesis using assms by auto
qed
next
case infinity
hence <j = 00>
using assms by auto
then show 7thesis by auto
qed

We further show that the subtraction of energies is decreasing.

lemma energy_diff_mono:
fixes s :: energy
shows <mono_on UNIV (Ax. x - s)>
unfolding mono_on_def
by (auto simp add: enat_diff_mono)

lemma gets_smaller:

fixes s :: energy
shows <(Ax. x - s) x < x>
by (auto)

(metis add.commute add_diff_cancel_enat enat_diff_mono idiff_infinity idiff_infinity_right
le_iff_add not_infinity_eq zero_le)+

lemma mono_subtract:
assumes <x < x’>
shows <(Ax. x - (Eabcdefgh)x< (M. x-(Eabcdefgh) x>
using assms enat_diff_mono by force

Abbreviations for performing subtraction in the energy games.

abbreviation <subtract_fn abcde f gh =

(Ax. if somewhere_larger x (E a b c d e £ g h) then None else Some (x - (Eabcdef gh))>

abbreviation <subtract a bc d e f g h = Some (subtract_fn ab cde f gh)>

3.2 Minimum Updates

Two energy updates that replace the first component with the minimum of two other components.

casse e of Eabcdef gh= Some (E (mina f) bcdefgh)>
case e of Eabcdefgh = Some (E (minag) bcdefgh)>

definition <minl_6 e
definition <minl_7 e

Abbreviations for identity update.
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abbreviation <id_up = Some Some>

lift order to options

instantiation option :: (order) order
begin

definition less_eq_option_def [simp]:
<less_eq_option (optA :: ’a option) optB =
case optA of
(Some a) =
(case optB of
(Some b) = a < b |
None = False) |
None = True>

definition less_option_def [simp]:
<less_option (optA :: ’a option) optB = (optA < optB A — optB < optd)>

instance proof standard
fix x y::<’a option>
show <(x <y) = (x <y A -y < x)> by simp
next
fix x::<’a option>
show <x < x>
by (simp add: option.case_eq_if)
next
fix x y z::<’a option>
assume <x < y> <y < z>
thus <x < z>
unfolding less_eq_option_def
by (metis option.case_eq_if order_trans)
next
fix x y::<’a option>
assume < x < y> <y < x>
thus <x = y>
unfolding less_eq_option_def
by (smt (z3) inf.absorb_iff2 le_boolD option.case_eq_if option.split_sel order_antisym)
qed

end

Again, we prove some lemmas to ease the manipulation of expressions using mininum updates.

lemma min_1_6_simps[simp]:

shows <modal_depth (the (minl_6 e)) = min (modal_depth e) (pos_conjuncts e)>
<br_conj_depth (the (minl_6 e)) = br_conj_depth e>
<conj_depth (the (minl_6 e)) = conj_depth e>
<st_conj_depth (the (minl_6 e)) = st_conj_depth e>
<imm_conj_depth (the (minl_6 e)) = imm_conj_depth e>
<pos_conjuncts (the (minl_6 e)) = pos_conjuncts e>
<neg_conjuncts (the (minl_6 e)) = neg_conjuncts e>
<neg_depth (the (minl_6 e)) = neg_depth e>

unfolding minl_6_def by (simp_all add: energy.case_eq_if)

shows <modal_depth (the (minl_7 e)) = min (modal_depth e) (neg_conjuncts e)>
<br_conj_depth (the (minl_7 e)) = br_conj_depth e>
<conj_depth (the (minl_7 e)) = conj_depth e>
<st_conj_depth (the (minl_7 e)) = st_conj_depth e>
<imm_conj_depth (the (minl_7 e)) = imm_conj_depth e>
<pos_conjuncts (the (minl_7 e)) = pos_conjuncts e>

lemma min_1_7_simps[simp]:
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<neg_conjuncts (the (minl_7 e)) = neg_conjuncts e>
<neg_depth (the (minl_7 e)) = neg_depth e>
unfolding minl_7_def by (simp_all add: energy.case_eq_if)

lemma min_1_6_some:
shows <minl_6 e # None>
unfolding minl_6_def
using energy.case_eq_if by blast

lemma min_1_7_some:
shows <minl_7 e # None>
unfolding minl_7_def
using energy.case_eq_if by blast

lemma min_1_7_lower_end:
assumes < (Option.bind ((subtract_fn 0 0 0 0 0 0 O 1) e) minl_7) = None>
shows <neg_depth e = 0>
using assms
by (smt (verit, ccfv_threshold) bind.bind_lunit energy.sel ileIl
leq_components min_1_7_some not_gr_zero one_eSuc zero_le)

lemma min_1_7_subtr_simp:
shows < (Option.bind ((subtract_fn 0 0 0 0 0 0 0 1) e) minl_7)
= (if neg_depth e = O then None
else Some (E (min (modal_depth e) (neg_conjuncts e)) (br_conj_depth e) (conj_depth e)

(st_conj_depth e) (imm_conj_depth e) (pos_conjuncts e)
(neg_conjuncts e) (neg_depth e - 1)))>

using min_1_7_lower_end

by (auto simp add: minl_7_def)

lemma min_1_7_subtr_mono:
shows <mono (Ae. Option.bind ((subtract_fn 0 0 0 0 0 0 0 1) e) minl_7)>
proof
fix el e2 :: energy
assume <el < e2>
thus <(Me. Option.bind ((subtract_fn 0 0 0 0 0 0 0 1) e) minl_7) el
< (Xe. Option.bind ((subtract_fn 0 0 0 0 0 0 0 1) e) minl_7) e2>
unfolding min_1_7_subtr_simp
by (auto simp add: min.coboundedIl min.coboundedI2 enat_diff_mono)
qed

lemma min_1_6_subtr_simp:
shows < (Option.bind ((subtract_fn 0 1 1 0 0 0 O 0) e) minl_6)
= (if br_conj_depth e = 0 V conj_depth e = O then None
else Some (E (min (modal_depth e) (pos_conjuncts e)) (br_conj_depth e - 1)
(conj_depth e - 1) (st_conj_depth e) (imm_conj_depth e)
(pos_conjuncts e) (neg_conjuncts e) (neg_depth e)))>
by (auto simp add: minl_6_def ileIl one_eSuc)

instantiation energy :: Sup
begin

definition <Sup ee = E
(Sup (modal_depth ¢ ee)) (Sup (br_conj_depth ¢ ee )) (Sup (conj_depth ‘ ee))
(Sup (st_conj_depth ¢ ee)) (Sup (imm_conj_depth ¢ ee)) (Sup (pos_conjuncts ‘ ee))
(Sup (neg_conjuncts ‘ ee)) (Sup (neg_depth ¢ ee))>

instance ..
end
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end

3.3 Components of Expressiveness Prices

theory Expressiveness_Price
imports HML_SRBB Energy
begin

The (maximal) modal depth (of observations (), («)) is increased on each Obs and BranchConj.

primrec
modal_depth_srbb :: <(’act, ’i) hml_srbb = enat>
and modal_depth_srbb_inner :: <(’act, ’i) hml_srbb_inner = enat>
and modal_depth_srbb_conjunct :: <(’act, ’i) hml_srbb_conjunct = enat> where

<modal_depth_srbb TT = 0> |
<modal_depth_srbb (Internal x) = modal_depth_srbb_inner x> |
<modal_depth_srbb (ImmConj I %s) = Sup ((modal_depth_srbb_conjunct o ¥s) ¢ I)> |

<modal_depth_srbb_inner (0bs a ¢) = 1 + modal_depth_srbb ¢> |
<modal_depth_srbb_inner (Conj I v¢s) =
Sup ((modal_depth_srbb_conjunct o #s) ¢ I)> |
<modal_depth_srbb_inner (StableConj I ws) =
Sup ((modal_depth_srbb_conjunct o os) ¢ I)> |
<modal_depth_srbb_inner (BranchConj a ¢ I ¥s) =
Sup ({1 + modal_depth_srbb ¢} U ((modal_depth_srbb_conjunct o 3s) ‘¢ I))> |

<modal_depth_srbb_conjunct (Pos x)
<modal_depth_srbb_conjunct (Neg x)

modal_depth_srbb_inner x> |
modal_depth_srbb_inner x>

The depth of branching conjunctions (with one observation clause not starting with (¢)) is increased
on each: BranchConj.

primrec
branching_conjunction_depth :: <(’a, ’s) hml_srbb = enat>
and branch_conj_depth_inner :: <(’a, ’s) hml_srbb_inner =- enat>
and branch_conj_depth_conjunct :: <(’a, ’s) hml_srbb_conjunct = enat> where

<branching_conjunction_depth TT = 0> |
<branching_conjunction_depth (Internal X) = branch_conj_depth_inner x> |
<branching_conjunction_depth (ImmConj I ws) =

Sup ((branch_conj_depth_conjunct o os) ¢ I)> |

<branch_conj_depth_inner (Obs _ ¢) = branching_conjunction_depth ¢> |
<branch_conj_depth_inner (Conj I %)s) = Sup ((branch_conj_depth_conjunct o #s) ¢ I)> |
<branch_conj_depth_inner (StableConj I v¢s) =
Sup ((branch_conj_depth_conjunct o os) ¢ I)> |
<branch_conj_depth_inner (BranchConj _ ¢ I %s) =
1 + Sup ({branching_conjunction_depth ¢} U ((branch_conj_depth_conjunct o ¥s) ¢ I))> |

<branch_conj_depth_conjunct (Pos X) = branch_conj_depth_inner x> |
<branch_conj_depth_conjunct (Neg x) = branch_conj_depth_inner x>

The depth of stable conjunctions (that do enforce stability by a —(7) T-conjunct) is increased on
each StableConj. Note that if the StableConj is empty (has no other conjuncts), it is still counted.

primrec
stable_conjunction_depth :: <(’a, ’s) hml_srbb = enat>
and st_conj_depth_inner :: <(’a, ’s) hml_srbb_inner = enat>
and st_conj_depth_conjunct :: <(’a, ’s) hml_srbb_conjunct = enat> where

<stable_conjunction_depth TT = 0> |
<stable_conjunction_depth (Internal Y) = st_conj_depth_inner x> |
<stable_conjunction_depth (ImmConj I %)s) = Sup ((st_conj_depth_conjunct o ¥s) ¢ I)> |

<st_conj_depth_inner (Obs _ ¢) = stable_conjunction_depth ¢> |
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<st_conj_depth_inner (Conj I %¥s) = Sup ((st_conj_depth_conjunct o #s) ¢ I)> |
<st_conj_depth_inner (StableConj I %s) = 1 + Sup ((st_conj_depth_conjunct o #¥s) ¢ I)> |
<st_conj_depth_inner (BranchConj _ ¢ I ¢s) =

Sup ({stable_conjunction_depth ¢} U ((st_conj_depth_conjunct o ¥s) ¢ I))> |

<st_conj_depth_conjunct (Pos X) = st_conj_depth_inner x> |
<st_conj_depth_conjunct (Neg Xx) = st_conj_depth_inner x>

The depth of unstable conjunctions (that do not enforce stability by a —(7) T-conjunct) is increased
on each:

e ImmConj if there are conjuncts (i.e. A{} is not counted)
e Conj if there are conjuncts, (i.e. the conjunction is not empty)

e BranchConj.

primrec
unstable_conjunction_depth :: <(’a, ’s) hml_srbb = enat>
and inst_conj_depth_inner :: <(’a, ’s) hml_srbb_inner = enat>
and inst_conj_depth_conjunct :: <(’a, ’s) hml_srbb_conjunct = enat> where

<unstable_conjunction_depth TT = 0> |
<unstable_conjunction_depth (Internal x) = inst_conj_depth_inner x> |
<unstable_conjunction_depth (ImmConj I vs) =

(if T =1}

then 0O

else 1 + Sup ((inst_conj_depth_conjunct o os) ¢ I))> |

<inst_conj_depth_inner (Obs _ ¢) = unstable_conjunction_depth ¢> |
<inst_conj_depth_inner (Conj I %s) =
(if T =1}
then 0O
else 1 + Sup ((inst_conj_depth_conjunct o os) ¢ I))> |
<inst_conj_depth_inner (StableConj I v¢s) =
Sup ((inst_conj_depth_conjunct o ts) ¢ I)> |
<inst_conj_depth_inner (BranchConj _ ¢ I ¥¢s) =
1 + Sup ({unstable_conjunction_depth ¢} U ((inst_conj_depth_conjunct o #s) ¢ I))> |

<inst_conj_depth_conjunct (Pos x) inst_conj_depth_inner x> |
<inst_conj_depth_conjunct (Neg x) = inst_conj_depth_inner x>

The depth of immediate conjunctions (that are not preceded by (€)) is increased on each ImmConj
if there are conjuncts (i.e. A{} is not counted).

primrec
immediate_conjunction_depth :: <(’a, ’s) hml_srbb = enat>
and imm_conj_depth_inner :: <(’a, ’s) hml_srbb_inner = enat>
and imm_conj_depth_conjunct :: <(’a, ’s) hml_srbb_conjunct = enat> where

<immediate_conjunction_depth TT = 0> |
<immediate_conjunction_depth (Internal X) = imm_conj_depth_inner x> |
<immediate_conjunction_depth (ImmConj I %s) =

(if I ={}

then 0O

else 1 + Sup ((imm_conj_depth_conjunct o ¢s) ¢ I))> |

<imm_conj_depth_inner (Obs _ ¢) = immediate_conjunction_depth ¢> |
<imm_conj_depth_inner (Conj I %s) = Sup ((imm_conj_depth_conjunct o ¢s) ‘ I)> |
<imm_conj_depth_inner (StableConj I ws) = Sup ((imm_conj_depth_conjunct o ¥s) ¢ I)> |
<imm_conj_depth_inner (BranchConj _ ¢ I ¥s) =

Sup ({immediate_conjunction_depth ¢} U ((imm_conj_depth_conjunct o ¢s) ¢ I))> |
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<imm_conj_depth_conjunct (Pos x) = imm_conj_depth_inner x> |
<imm_conj_depth_conjunct (Neg x) = imm_conj_depth_inner x>

The maximal modal depth of positive clauses in conjunctions calculates the modal depth for every
positive clause in a conjunction (Pos ).

primrec
max_positive_conjunct_depth :: <(’a, ’s) hml_srbb = enat>
and max_pos_conj_depth_inner :: <(’a, ’s) hml_srbb_inner = enat>

and max_pos_conj_depth_conjunct :: <(’a, ’s) hml_srbb_conjunct = enat> where
<max_positive_conjunct_depth TT = 0> |
<max_positive_conjunct_depth (Internal X) = max_pos_conj_depth_inner x> |
<max_positive_conjunct_depth (ImmConj I ts) =

Sup ((max_pos_conj_depth_conjunct o ts) ¢ I)> |

<max_pos_conj_depth_inner (Obs _ ¢) = max_positive_conjunct_depth ¢> |
<max_pos_conj_depth_inner (Conj I %s) =

Sup ((max_pos_conj_depth_conjunct o ¥s) ¢ I)> |
<max_pos_conj_depth_inner (StableConj I s) =

Sup ((max_pos_conj_depth_conjunct o ¥s) ¢ I)> |
<max_pos_conj_depth_inner (BranchConj _ ¢ I ¢s) =

Sup ({1 + modal_depth_srbb ¢, max_positive_conjunct_depth ¢}

U ((max_pos_conj_depth_conjunct o ts) ¢ I))> |

<max_pos_conj_depth_conjunct (Pos X) = modal_depth_srbb_inner x> |
<max_pos_conj_depth_conjunct (Neg x) max_pos_conj_depth_inner x>

The maximal modal depth of negative clauses in conjunctions calculates the modal depth for every
negative clause in a conjunction (Neg x).

primrec
max_negative_conjunct_depth :: <(’a, ’s) hml_srbb = enat>
and max_neg_conj_depth_inner :: <(’a, ’s) hml_srbb_inner = enat>

and max_neg_conj_depth_conjunct <(’a, ’s) hml_srbb_conjunct = enat> where
<max_negative_conjunct_depth TT = 0> |
<max_negative_conjunct_depth (Internal X) = max_neg_conj_depth_inner x> |
<max_negative_conjunct_depth (ImmConj I %s) =

Sup ((max_neg_conj_depth_conjunct o ¥s) ¢ I)> |

<max_neg_conj_depth_inner (Obs _ ¢) = max_negative_conjunct_depth > |
<max_neg_conj_depth_inner (Conj I ¢s) =
Sup ((max_neg_conj_depth_conjunct o t¥s) ¢ I)> |
<max_neg_conj_depth_inner (StableConj I s) =
Sup ((max_neg_conj_depth_conjunct o ¥s) ¢ I)> |
<max_neg_conj_depth_inner (BranchConj _ ¢ I ¢s) =
Sup ({max_negative_conjunct_depth ¢} U ((max_neg_conj_depth_conjunct o 3s) ¢ I))> |

<max_neg_conj_depth_conjunct (Pos X) = max_neg_conj_depth_inner x> |
<max_neg_conj_depth_conjunct (Neg x) modal_depth_srbb_inner x>

The depth of negations on a path of the syntax tree) is increased on each Neg x.
primrec

negation_depth :: <(’a, ’s) hml_srbb = enat>
and neg_depth_inner :: <(’a, ’s) hml_srbb_inner = enat>
and neg_depth_conjunct ::
<negation_depth TT = 0> |
<negation_depth (Internal x) = neg_depth_inner x> |
<negation_depth (ImmConj I %s) = Sup ((neg_depth_conjunct o os) ¢ I)> |

<(’a, ’s) hml_srbb_conjunct = enat> where

<neg_depth_inner (Obs _ ¢) = negation_depth ¢> |
<neg_depth_inner (Conj I ts) = Sup ((neg_depth_conjunct o s) ¢ I)> |
<neg_depth_inner (StableConj I %)s) = Sup ((neg_depth_conjunct o ts) ¢ I)> |
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<neg_depth_inner (BranchConj _ ¢ I ¥¢s) =
Sup ({negation_depth ¢} U ((neg_depth_conjunct o os) ‘ I))> |

neg_depth_inner x> |
1 + neg_depth_inner x>

<neg_depth_conjunct (Pos x)
<neg_depth_conjunct (Neg x)

3.4 Properties of Price Components

lemma <modal_depth_srbb TT = 0>
using Sup_enat_def by simp

lemma <modal_depth_srbb (Internal (Obs « (Internal (BranchConj B TT {} ¥s2)))) = 2>
using Sup_enat_def by simp

fun observe_n_alphas :: <’a = nat = (’a, nat) hml_srbb> where
<observe_n_alphas o 0 = TT> |
<observe_n_alphas a (Suc n) = Internal (Obs « (observe_n_alphas « n))>

lemma obs_n_c_depth_n: <modal_depth_srbb (observe_n_alphas o n) = n>
proof (induct n)
case 0
show 7case unfolding observe_n_alphas.simps(1) and modal_depth_srbb.simps(2)
using zero_enat_def and Sup_enat_def by force
next
case (Suc n)
then show 7case
using eSuc_enat plus_1_eSuc(1l) by auto
qed

lemma sup_nats_in_enats_infinite: <(SUP x€N. enat x) = 00>
by (metis Nats_infinite Sup_enat_def enat.inject finite.emptyl finite_imageD inj_on_def)

lemma sucs_of_nats_in_enats_sup_infinite: <(SUP x€N. 1 + enat x) = 00>
using sup_nats_in_enats_infinite
by (metis Sup.SUP_cong eSuc_Sup eSuc_infinity image_image image_is_empty plus_1_eSuc(1))

lemma <modal_depth_srbb (ImmConj NN (An. Pos (Obs « (observe_n_alphas « n)))) = oco>
unfolding modal_depth_srbb.simps(3)
and o_def
and modal_depth_srbb_conjunct.simps(1)
and modal_depth_srbb_inner.simps(1)
and obs_n_oa_depth_n

by (metis sucs_of_nats_in_enats_sup_infinite)

lemma modal_depth_dominates_pos_conjuncts:
fixes
p::<(’a, ’s) hml_srbb> and
x::<(’a, ’s) hml_srbb_inner> and
¥::<(’a, ’s) hml_srbb_conjunct>
shows
< (max_positive_conjunct_depth ¢ < modal_depth_srbb )
A (max_pos_conj_depth_inner x < modal_depth_srbb_inner x)
A (max_pos_conj_depth_conjunct ¢ < modal_depth_srbb_conjunct ) >
using hml_srbb_hml_srbb_inner_hml_srbb_conjunct.induct [of
<Ap::(’a, ’s) hml_srbb. max_positive_conjunct_depth ¢ < modal_depth_srbb ¢>
<Ax. max_pos_conj_depth_inner x < modal_depth_srbb_inner x>
<A\Y. max_pos_conj_depth_conjunct ¢ < modal_depth_srbb_conjunct 3 >]
by (auto simp add: SUP_mono’ add_increasing sup.coboundedIl sup.coboundedI2)

lemma modal_depth_dominates_neg_conjuncts:
fixes
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p::<(’a, ’s) hml_srbb> and
x::<(’a, ’s) hml_srbb_inner> and
¥::<(’a, ’s) hml_srbb_conjunct>
shows
< (max_negative_conjunct_depth ¢ < modal_depth_srbb )
A (max_neg_conj_depth_inner x < modal_depth_srbb_inner x)
A (max_neg_conj_depth_conjunct ¢ < modal_depth_srbb_conjunct ) >
using hml_srbb_hml_srbb_inner_hml_srbb_conjunct.induct [of
<Ap::(’a, ’s) hml_srbb. max_negative_conjunct_depth ¢ < modal_depth_srbb ¢>
<Ax. max_neg_conj_depth_inner x < modal_depth_srbb_inner x>
<A\. max_neg_conj_depth_conjunct ¢ < modal_depth_srbb_conjunct >]
by (auto simp add: SUP_mono’ add_increasing sup.coboundedIl sup.coboundedI2)

3.5 Expressiveness Price Function

The expressiveness_price function combines the eight component functions into one.

fun expressiveness_price :: <(’a, ’s) hml_srbb = energy> where
<expressiveness_price ¢ =
E (modal_depth_srbb ©)

(branching_conjunction_depth ¢)
(unstable_conjunction_depth ¢)
(stable_conjunction_depth ©)
(immediate_conjunction_depth ¢)
(max_positive_conjunct_depth ¢)
(max_negative_conjunct_depth ¢)
(negation_depth @) >

Here, we can see the decomposed price of an immediate conjunction:

lemma expressiveness_price_ImmConj_def:

shows <expressiveness_price (ImmConj I %s) = E
(Sup ((modal_depth_srbb_conjunct o ¥s) ¢ I))
(Sup ((branch_conj_depth_conjunct o ¥s) ¢ I))
(if I = {} then O else 1 + Sup ((inst_conj_depth_conjunct o s) ¢ I))
(Sup ((st_conj_depth_conjunct o #s) ¢ I))
(if I = {} then O else 1 + Sup ((imm_conj_depth_conjunct o ws) ¢ I))
(Sup ((max_pos_conj_depth_conjunct o 3s) ¢ I))
(Sup ((max_neg_conj_depth_conjunct o s) ¢ I))
(Sup ((neg_depth_conjunct o ts) ¢ I))> by simp

lemma expressiveness_price_ImmConj_non_empty_def:

assumes <I # {}>

shows <expressiveness_price (ImmConj I %s) = E
(Sup ((modal_depth_srbb_conjunct o ¥s) ¢ I))
(Sup ((branch_conj_depth_conjunct o ws) ¢ I))
(1 + Sup ((inst_conj_depth_conjunct o v¥s) ¢ I))
(Sup ((st_conj_depth_conjunct o #s) ¢ I))
(1 + Sup ((imm_conj_depth_conjunct o %s) ¢ I))
(Sup ((max_pos_conj_depth_conjunct o #s) ¢ I))
(Sup ((max_neg_conj_depth_conjunct o #s) ¢ I))
(Sup ((neg_depth_conjunct o ¥s) ¢ I))> using assms by simp

lemma expressiveness_price_ImmConj_empty_def:
assumes <I = {}>
shows <expressiveness_price (ImmConj I ts) =E 00 0O O 0 O 0> using assms
unfolding expressiveness_price_ImmConj_def by (simp add: bot_enat_def)

Formalizing HMLgrpp by mutually recursive data types leads to expressiveness price functions of
these other types and corresponding definitions and lemmas.

fun expr_pr_inner :: <(’a, ’s) hml_srbb_inner = energy> where
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<expr_pr_inner x =

E (modal_depth_srbb_inner x)
(branch_conj_depth_inner x)
(inst_conj_depth_inner x)
(st_conj_depth_inner x)
(imm_conj_depth_inner y)
(max_pos_conj_depth_inner x)
(max_neg_conj_depth_inner y)
(neg_depth_inner x)>

fun expr_pr_conjunct :: <(’a, ’s) hml_srbb_conjunct = energy> where
<expr_pr_conjunct ¢ =

E (modal_depth_srbb_conjunct )
(branch_conj_depth_conjunct %)
(inst_conj_depth_conjunct 1))
(st_conj_depth_conjunct )
(imm_conj_depth_conjunct )
(max_pos_conj_depth_conjunct )
(max_neg_conj_depth_conjunct )
(neg_depth_conjunct 1) >

3.6 Prices of Certain Formulas

context lts_tau
begin

For example, here, we establish that the expressiveness price of Internal x is equal to the expres-
siveness price of .

lemma expr_internal_eq:
shows <expressiveness_price (Internal x) = expr_pr_inner x>
by auto

lemma expr_pos:
assumes <expr_pr_inner x < the (minl_6 e)>
shows <expr_pr_conjunct (Pos x) < e>
using assms by auto

lemma expr_neg:
assumes
<expr_pr_inmer x < e’>
< (Option.bind ((subtract_fn 0 0 0 0 0 0 0 1) e) minl_7) = Some e’>
shows <expr_pr_conjunct (Neg x) < e>
proof -
have expr_neg: <expr_pr_conjunct (Neg x) =
E (modal_depth_srbb_conjunct (Neg X))
(branch_conj_depth_conjunct (Neg X))
(inst_conj_depth_conjunct (Neg x))
(st_conj_depth_conjunct (Neg x))
(imm_conj_depth_conjunct (Neg x))
(max_pos_conj_depth_conjunct (Neg x))
(max_neg_conj_depth_conjunct (Neg x))
(neg_depth_conjunct (Neg x))>
using expr_pr_conjunct.simps by blast
have neg_ups:
<modal_depth_srbb_conjunct (Neg x) = modal_depth_srbb_inner x>
< (branch_conj_depth_conjunct (Neg X)) = branch_conj_depth_inner x>
<inst_conj_depth_conjunct (Neg x) = inst_conj_depth_inner x>
<st_conj_depth_conjunct (Neg x) = st_conj_depth_inner x>
<imm_conj_depth_conjunct (Neg x) = imm_conj_depth_inner x>
<max_pos_conj_depth_conjunct (Neg Xx) = max_pos_conj_depth_inner x>
<max_neg_conj_depth_conjunct (Neg x) = modal_depth_srbb_inner x>
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<neg_depth_conjunct (Neg x) = 1 + neg_depth_inner x>
by simp+
obtain el e2 e3 e4 eb eb6 e7 e8 where e_def: <e
by (metis energy.exhaust_sel)
hence is_some: < (subtract_fn 0 0 0 0 0 0 0 1 e = Some (E el e2 e3 e4 e5 e6 e7 (e8-1)))>
using assms bind_eq_None_conv by fastforce
hence <modal_depth_srbb_inner x < (min el e7)>
using assms expr_pr_inner.simps leq_components min_1_7_subtr_simp e_def
by (metis energy.sel(1l) energy.sel(7) option.discI option.inject)
moreover have <neg_depth_inner x < (e8-1)>
using e_def is_some energy_minus leq_components min_1_7_simps assms
by (smt (verit, ccfv_threshold) bind.bind_lunit energy.sel(8) expr_pr_inner.simps option.sel)
moreover hence <neg_depth_conjunct (Neg x) < e8>
using <neg_depth_conjunct (Neg x) = 1 + neg_depth_inner x>
by (metis is_some add_diff_assoc_enat add_diff_cancel_enat e_def enat.simps(3)
enat_defs(2) enat_diff_mono energy.sel(8) leq_components linorder_not_less
option.distinct(1) order_le_less)
ultimately show <expr_pr_conjunct (Neg x) < e>
using expr_neg e_def is_some assms neg_ups assms leq_components min_1_7_subtr_simp
by (metis energy.sel expr_pr_inner.simps min.bounded_iff option.distinct(1) option.inject)

E el e2 e3 e4 eb e6 e7 e8>

qed

lemma expr_obs:
assumes
<expressiveness_price ¢ < e’>
<subtract_fn 1 0 0 0 0 0 0 O e = Some e’>
shows <expr_pr_inner (Obs «a ¢) < e>
using assms
by (simp) (metis add_diff_cancel_enat add_mono_thms_linordered_semiring(1)
enat.simps(3) enat_defs(2) energy.sel idiff_O_right
le_iff_add le_numeral_extra(4) minus_energy_def option.discI
option.inject)

lemma expr_st_conj:

assumes
<subtract_fn 0 0 01 00 0 0O e = Some e’>
<I # {}>
<Vq € I. expr_pr_conjunct (¢s q) < e’>
shows
<expr_pr_inner (StableConj I v¢s) < e>
proof -

have st_conj_upds:
<modal_depth_srbb_inner (StableConj I ¢s) = Sup ((modal_depth_srbb_conjunct o is) ¢ I)>
<branch_conj_depth_inner (StableConj I s) = Sup ((branch_conj_depth_conjunct o s) ‘ I)>
<inst_conj_depth_inner (StableConj I v¥s) = Sup ((inst_conj_depth_conjunct o #s) ¢ I)>
<st_conj_depth_inner (StableConj I ts) = 1 + Sup ((st_conj_depth_conjunct o #s) ¢ I)>
<imm_conj_depth_inner (StableConj I s) = Sup ((imm_conj_depth_conjunct o ws) ¢ I)>
<max_pos_conj_depth_inner (StableConj I ts) = Sup ((max_pos_conj_depth_conjunctoys) ¢ I)>
<max_neg_conj_depth_inner (StableConj I ts) = Sup ((max_neg_conj_depth_conjunctoys) ¢ I)>
<neg_depth_inner (StableConj I %)s) = Sup ((neg_depth_conjunct o os) ¢ I)>
by force+

obtain el e2 e3 e4 eb e6 e7 e8 where e_def: <e
using energy.exhaust_sel by blast

hence is_some: <subtract_fn 0 0 0 1 00 0 0 e
using assms minus_energy_def
by (smt (verit, del_insts) energy_minus idiff_O_right option.distinct(1))

hence

E el e2 e3 e4 eb e6 e7 e8>

Some (E el e2 e3 (e4-1) e5 e6 e7 e8)>

<Vi € I. modal_depth_srbb_conjunct (¢s i) < el>
<Vi € I. branch_conj_depth_conjunct (¢s i) < e2>
<Vi € I. inst_conj_depth_conjunct (¢s i) < e3>
<Vi € I. st_conj_depth_conjunct (¢s i) < (ed - 1)>
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<Vi € I. imm_conj_depth_conjunct (¢s i) < eb>
<Vi € I. max_pos_conj_depth_conjunct (¢s i) < e6>
<Vi € I. max_neg_conj_depth_conjunct (s i) < e7>
<Vi € I. neg_depth_conjunct (¢s i) < e8>

using assms unfolding leq_components by auto

hence sups:
<Sup ((modal_depth_srbb_conjunct o 3s) ¢ I) < el>
<Sup ((branch_conj_depth_conjunct o %s) ¢ I) < e2>
<Sup ((inst_conj_depth_conjunct o ¢s) ¢ I) < e3>
<Sup ((st_conj_depth_conjunct o ts) ¢ I) < (e4 - 1)>
<Sup ((imm_conj_depth_conjunct o ts) ¢ I) < eb>
<Sup ((max_pos_conj_depth_conjunct o ¥s) ¢ I) < e6>
<Sup ((max_neg_conj_depth_conjunct o #s) ¢ I) < e7>
<Sup ((neg_depth_conjunct o #s) ¢ I) < e8>
by (simp add: Sup_le_iff)+

hence <st_conj_depth_inner (StableConj I ws) < e4d>
using e_def is_some minus_energy_def leq_components st_conj_upds(4)
by (metis add_diff_cancel_enat add_left_mono enat.simps(3) enat_defs(2) energy.sel(4)

le_iff_add option.distinct(1))

then show 7thesis
using st_conj_upds sups
by (simp add: e_def)

qed

lemma expr_imm_conj:

assumes
<subtract_fn 0 0 00100 0 e = Some e’>
I #£ {F>
<expr_pr_inner (Conj I #s) < e’>

shows <expressiveness_price (ImmConj I ¢s) < e>

proof -

have conj_upds:
<modal_depth_srbb_inner (Conj I %¥s) = Sup ((modal_depth_srbb_conjunct o ts) ¢ I)>
<branch_conj_depth_inner (Conj I ¢s) = Sup ((branch_conj_depth_conjunct o %s) ¢ I)>
<inst_conj_depth_inner (Conj I %s) = 1 + Sup ((inst_conj_depth_conjunct o #s) ¢ I)>
<st_conj_depth_inner (Conj I %s) = Sup ((st_conj_depth_conjunct o #s) ¢ I)>
<imm_conj_depth_inner (Conj I %s) = Sup ((imm_conj_depth_conjunct o s) ¢ I)>
<max_pos_conj_depth_inner (Conj I %s) = Sup ((max_pos_conj_depth_conjunct o s) ¢ I)>
<max_neg_conj_depth_inner (Conj I %s) = Sup ((max_neg_conj_depth_conjunct o ws) ¢ I)>
<neg_depth_inner (Conj I v¥s) = Sup ((neg_depth_conjunct o 3s) ¢ I)>
using assms
by force+

have imm_conj_upds:
<modal_depth_srbb (ImmConj I ts) = Sup ((modal_depth_srbb_conjunct o ws) ¢ I)>
<branching_conjunction_depth (ImmConj I %s) = Sup ((branch_conj_depth_conjunctoys) ¢ I)>
<unstable_conjunction_depth (ImmConj I %s) = 1 + Sup ((inst_conj_depth_conjunctoys) ¢ I)>
<stable_conjunction_depth (ImmConj I %s) = Sup ((st_conj_depth_conjunctoyps) ¢ I)>
<immediate_conjunction_depth (ImmConj I %s) = 1 + Sup ((imm_conj_depth_conjunctoys) ¢ I)>
<max_positive_conjunct_depth (ImmConj I %s) = Sup ((max_pos_conj_depth_conjunctoys) ¢ I)>
<max_negative_conjunct_depth (ImmConj I %s) = Sup ((max_neg_conj_depth_conjunctoys) ‘ I)>
<negation_depth (ImmConj I v¥s) = Sup ((neg_depth_conjunctoys) ¢ I)>
using assms
by force+

obtain el e2 e3 e4 e5 e6 e7 e8 where e_def: <e = E el e2 e3 e4 e5 e6 e7 e8>
using assms by (metis energy.exhaust_sel)

hence is_some: <(e - (E0 000 1000)) = (E el e2 e3 e4 (e5-1) e6 e7 e8)>
using minus_energy_def

by simp
hence <e5>0> using assms(1) e_def leq_components by auto
have

<E (modal_depth_srbb_inner (Conj I v¥s))
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(branch_conj_depth_inner (Conj I vs))
(inst_conj_depth_inner (Conj I s))
(st_conj_depth_inner (Conj I ts))
(imm_conj_depth_inner (Conj I ¥s))
(max_pos_conj_depth_inner (Conj I %s))
(max_neg_conj_depth_inner (Conj I s))
(neg_depth_inner (Conj I ¥s)) < (E el e2 e3 e4 (eb-1) e6 e7 e8)>
using is_some assms
by (metis expr_pr_inner.simps option.discI option.inject)
hence
< (modal_depth_srbb_inner (Conj I ¥s))< el>
< (branch_conj_depth_inner (Conj I 3s)) < e2>
< (inst_conj_depth_inner (Conj I ¢s)) < e3>
<(st_conj_depth_inner (Conj I vs))< ed>
<(imm_conj_depth_inner (Conj I %s))< (eb-1)>
< (max_pos_conj_depth_inner (Conj I ¢s)) < e6>
< (max_neg_conj_depth_inner (Conj I #s)) < e7>
< (neg_depth_inner (Conj I ¥s))< e8>
by auto
hence E:
<Sup ((modal_depth_srbb_conjunct o ¥s) ¢ I) < el>
<Sup ((branch_conj_depth_conjunct o 3s) ¢ I) < e2>
<1 + Sup ((inst_conj_depth_conjunct o #s) ¢ I) < e3>
<Sup ((st_conj_depth_conjunct o ts) ¢ I) < ed>
<Sup ((imm_conj_depth_conjunct o s) ¢ I) < (eb-1)>
<Sup ((max_pos_conj_depth_conjunct o #s) ¢ I) < e6>
<Sup ((max_neg_conj_depth_conjunct o ¥s) ¢ I) < e7>
<Sup ((neg_depth_conjunct o 7s) ¢ I) < e8>
using conj_upds by force+
from this(5) have < (1 + Sup ((imm_conj_depth_conjunct o ¥s) ‘¢ I)) < eb>
using assms(1l) <eb5>0> is_some e_def add.right_neutral
add_diff_cancel_enat enat_add_left_cancel_le ileIl le_iff_add plus_1_eSuc(1)
by metis
thus <expressiveness_price (ImmConj I %¢s) < e> using imm_conj_upds E
by (metis e_def energy.sel expressiveness_price.elims leD somewhere_larger_eq)
qed

lemma expr_conj:

assumes
<subtract_fn 0 0 1 0 0 0 0 O e = Some e’>
<I # {¥>
<Vq € I. expr_pr_conjunct (¢s q) < e’>

shows <expr_pr_inner (Conj I #s) < e>

proof -

have conj_upds:
<modal_depth_srbb_inner (Conj I v¥s) = Sup ((modal_depth_srbb_conjunct o ts) ¢ I)>
<branch_conj_depth_inner (Conj I s) = Sup ((branch_conj_depth_conjunct o ws) ¢ I)>
<inst_conj_depth_inner (Conj I %s) = 1 + Sup ((inst_conj_depth_conjunct o %s) ¢ I)>
<st_conj_depth_inner (Conj I %s) = Sup ((st_conj_depth_conjunct o ws) ¢ I)>
<imm_conj_depth_inner (Conj I ts) = Sup ((imm_conj_depth_conjunct o s) ¢ I)>
<max_pos_conj_depth_inner (Conj I %s) = Sup ((max_pos_conj_depth_conjunct o #s) ¢ I)>
<max_neg_conj_depth_inner (Conj I vs) = Sup ((max_neg_conj_depth_conjunct o ws) ¢ I)>
<neg_depth_inner (Conj I %s) = Sup ((neg_depth_conjunct o s) ¢ I)>
using assms by force+

obtain el e2 e3 e4 e5 eb e7 e8 where e_def: <e = E el e2 e3 e4 eb e6 e7 e8>
using energy.exhaust_sel by metis

hence is_some: <e - (E0 01 00000) =E el e2 (e3-1) ed e5 e6 e7 e8>
using minus_energy_def by simp

hence <e3>0> using assms(1l) e_def leq_components by auto

hence
<Vi € I. modal_depth_srbb_conjunct (¢s i) < el>
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<Vi € I. branch_conj_depth_conjunct (s i) < e2>
<Vi € I. inst_conj_depth_conjunct (¢s i) < (e3-1)>
<Vi € I. st_conj_depth_conjunct (¢s i) < ed>

<Vi € I. imm_conj_depth_conjunct (¢s i) < eb>

<Vi € I. max_pos_conj_depth_conjunct (¢s i) < e6>
<Vi € I. max_neg_conj_depth_conjunct (s i) < e7>
<Vi € I. neg_depth_conjunct (¢s i) < e8>

using assms is_some energy.sel leq_components
by (metis expr_pr_conjunct.elims option.distinct(1l) option.inject)+
hence sups:
<Sup ((modal_depth_srbb_conjunct o os) ¢ I) < el>
<Sup ((branch_conj_depth_conjunct o 3s) ¢ I) < e2>
<Sup ((inst_conj_depth_conjunct o ¥s) ¢ I) < (e3-1)>
<Sup ((st_conj_depth_conjunct o ¢s) ¢ I) < e4d>
<Sup ((imm_conj_depth_conjunct o 3s) ¢ I) < eb>
<Sup ((max_pos_conj_depth_conjunct o ¥s) ¢ I)
<Sup ((max_neg_conj_depth_conjunct o #s) ¢ I)
<Sup ((neg_depth_conjunct o 3s) ¢ I) < e8>
by (simp add: Sup_le_iff)+
hence <inst_conj_depth_inner (Conj I v¥s) < e3>
using <e3>0> is_some e_def
unfolding conj_upds(3)
by (metis add.right_neutral add_diff_cancel_enat enat_add_left_cancel_le ileIl
le_iff_add plus_1_eSuc(1))
then show 7thesis
using conj_upds sups
by (simp add: e_def)

e6>

<
< e7>

qed

lemma expr_br_conj:
assumes
<subtract_fn 01 1 00 0 0 0 e = Some e’>
<minl_6 e’ = Some e’’>
<subtract_fn 1 0 0 0 0 0 0 0 e’’ = Some e’’’>
<expressiveness_price ¢ < e’’’>
<Vq € Q. expr_pr_conjunct (& q) < e’>
<1 + modal_depth_srbb ¢ < pos_conjuncts e>
shows <expr_pr_inner (BranchConj o ¢ Q ®) < e>
proof -
obtain el e2 e3 e4 eb eb e7 e8 where e_def: <e = E el e2 e3 e4 eb e6 e7 e8>
by (smt (23) energy.exhaust)
hence e’’’ _def: <e’’’ = (E ((min el e6)-1) (e2-1) (e3-1) e4 e5 e6 e7 e8)>
using minus_energy_def
by (smt (23) assms energy.sel idiff_O_right min_1_6_simps option.distinct(1) option.sel)
hence min_vals: <the (minl 6 (¢ ~-E01100000) -(E10000000)
= (E ((min el e6)-1) (e2-1) (e3-1) e4 e5 e6 e7 e8)>
using assms
by (metis not_Some_eq option.sel)
hence <0 < el> <0 < e2> <0 < e3> <0 < e6>
using assms energy.sel min_1_6_simps
unfolding e_def minus_energy_def leq_components
by (metis (no_types, lifting) gr_zerol idiff_O_right min_enat_simps(3)
not_one_le_zero option.distinct(1l) option.sel, auto)
have e_comp: <e - (E01100000) =E el (e2-1) (e3-1) e4 e5 e6 e7 e8> using e_def
by simp
have conj:
<E (modal_depth_srbb ©)
(branching_conjunction_depth )
(unstable_conjunction_depth ¢)
(stable_conjunction_depth ©)
(immediate_conjunction_depth )
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(max_positive_conjunct_depth )
(max_negative_conjunct_depth ¢)
(negation_depth )
< ((E ((min el eB)-1) (e2-1) (e3-1) e4 eb eb e7 e8))>
using assms e’’’_def by force
hence conj_single:

<modal_depth_srbb ¢ < ((min el e6)-1)>
<branching_conjunction_depth ¢ < e2 -1>

< (unstable_conjunction_depth ¢) < e3-1>

< (stable_conjunction_depth p) < e4>

< (immediate_conjunction_depth ¢) < eb>

< (max_positive_conjunct_depth ¢) < e6>

< (max_negative_conjunct_depth ¢) < e7>

< (negation_depth p) < e8>

using leq_components by auto
have <0 < (min el e6)> using <0 < el> <0 < e6>
using min_less_iff_conj by blast
hence <1 + modal_depth_srbb ¢ < (min el e6)>
using conj_single add.commute add_diff_assoc_enat add_diff_cancel_enat
add_right_mono conj_single(2) il_ne_infinity ileIl one_eSuc
by (metis (no_types, lifting))
hence <1 + modal_depth_srbb ¢ < el> <1 + modal_depth_srbb ¢ < e6>
using min.bounded_iff by blast+
from conj have <1 + branching_conjunction_depth ¢ < e2>
by (metis <0 < e2> add.commute add_diff_assoc_enat add_diff_cancel_enat
add_right_mono conj_single(2) il_ne_infinity ileIl one_eSuc)
from conj_single have <1 + unstable_conjunction_depth ¢ < e3>
using <0 < e3> add.commute add_diff_assoc_enat add_diff_cancel_enat
add_right_mono conj_single(2) il_ne_infinity ileIl one_eSuc
by (metis (no_types, lifting))
have branch: <VqeQ.
E (modal_depth_srbb_conjunct (¥ q))
(branch_conj_depth_conjunct (& q))
(inst_conj_depth_conjunct (® q))
(st_conj_depth_conjunct (P q))
(imm_conj_depth_conjunct (P q))
(max_pos_conj_depth_conjunct ($ q))
(max_neg_conj_depth_conjunct (P q))
(neg_depth_conjunct (P q))
< (E el (e2-1) (e3-1) e4 e5 e6 e7 e8)>
using assms e_def e_comp
by (metis expr_pr_conjunct.simps option.distinct(1l) option.sel)
hence branch_single:
<Vq€Q. (modal_depth_srbb_conjunct (P q)) < el>
<Vq€Q. (branch_conj_depth_conjunct (& q)) < (e2-1)>
<VqeQ. (inst_conj_depth_conjunct (& q)) < (e3-1)>
<VqeQ. (st_conj_depth_conjunct (& q)) < e4>
<Vq€eQ. (imm_conj_depth_conjunct (P q)) < eb>
<VqeQ. (max_pos_conj_depth_conjunct (P q)) < e6>
<VqeQ. (max_neg_conj_depth_conjunct (P q)) < e7>
<VqeQ. (neg_depth_conjunct (P q)) < e8>
by auto
hence <Vq€Q. (1 + branch_conj_depth_conjunct (P q)) < e2>
by (metis <0 < e2> add.commute add_diff_assoc_enat add_diff_cancel_enat
add_right_mono il_ne_infinity ileIl one_eSuc)
from branch_single have <Vq€Q. (1 + inst_conj_depth_conjunct (& q)) < e3>
using <0 < e3>
by (metis add.commute add_diff_assoc_enat add_diff_cancel_enat add_right_mono
il_ne_infinity ileIl one_eSuc)
have
<expr_pr_inner (BranchConj a ¢ Q P)
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= E (modal_depth_srbb_inner (BranchConj « ¢ Q ®))
(branch_conj_depth_inner (BranchConj a ¢ Q ®))
(inst_conj_depth_inner (BranchConj a ¢ Q ®))
(st_conj_depth_inner (BranchConj a ¢ Q ®))
(imm_conj_depth_inner (BranchConj « ¢ Q P))
(max_pos_conj_depth_inner (BranchConj o ¢ Q ®))
(max_neg_conj_depth_inner (BranchConj a ¢ Q ®))
(neg_depth_inner (BranchConj «a ¢ Q ®))> by simp
hence expr:
<expr_pr_inner (BranchConj a ¢ Q P)
= E (Sup ({1 + modal_depth_srbb ¢} U ((modal_depth_srbb_conjunct o ®) ¢ Q)))
(1 + Sup ({branching_conjunction_depth ¢} U ((branch_conj_depth_conjunct o ®) ¢ Q)))
(1 + Sup ({unstable_conjunction_depth ¢} U ((inst_conj_depth_conjunct o ®) ¢ Q)))
(Sup ({stable_conjunction_depth ¢} U ((st_conj_depth_conjunct o ®) ¢ Q)))
(Sup ({immediate_conjunction_depth ¢} U ((imm_conj_depth_conjunct o ®) ¢ Q)))
(Sup ({1 + modal_depth_srbb ¢, max_positive_conjunct_depth ¢}
U ((max_pos_conj_depth_conjunct o ®) ¢ Q)))
(Sup ({max_negative_conjunct_depth ¢} U ((max_neg_conj_depth_conjunct o ®) ¢ Q)))
(Sup ({negation_depth ¢} U ((neg_depth_conjunct o ®) ¢ Q)))> by auto
from branch_single <1 + modal_depth_srbb ¢ < el>
have <Vx € ({1 + modal_depth_srbb ¢} U ((modal_depth_srbb_conjunct o ) ¢ Q)). x < el>
by fastforce
hence el_le:
<(Sup ({1 + modal_depth_srbb ¢} U ((modal_depth_srbb_conjunct o ®) ¢ Q))) < el>
using Sup_least by blast
have <Vx € {branching_conjunction_depth ¢} U ((branch_conj_depth_conjunct o ®) ¢ Q).
x < e2 - 1>
using branch_single conj_single comp_apply image_iff insertE by auto
hence e2_le:
<1 + Sup ({branching_conjunction_depth ¢}
U ((branch_conj_depth_conjunct o ®) ¢ Q)) < e2>
using Sup_least
by (metis Un_insert_left <0 < e2> add.commute eSuc_minus_1 enat_add_left_cancel_le
ileIl le_iff_add one_eSuc plus_1_eSuc(2) sup_bot_left)
have <Vx € ({unstable_conjunction_depth ¢} U ((inst_conj_depth_conjunct o ®) ¢ Q)).
x < e3-1>
using conj_single branch_single
using comp_apply image_iff insertE by auto
hence e3_le:
<1 + Sup ({unstable_conjunction_depth ¢} U ((inst_conj_depth_conjunct o ®) < Q)) < e3>
using Un_insert_left <0<e3> add.commute eSuc_minus_1 enat_add_left_cancel_le ileIl
le_iff_add one_eSuc plus_1_eSuc(2) sup_bot_left
by (metis Sup_least)
have fa:
<Vx € ({stable_conjunction_depth ¢} U ((st_conj_depth_conjunct o ®) ¢ Q)). x < e4d>
<Vx € ({immediate_conjunction_depth ¢} U ((imm_conj_depth_conjunct o ®) ¢ Q)). x < eb>
<Vx € ({1 + modal_depth_srbb ¢, max_positive_conjunct_depth ¢}
U ((max_pos_conj_depth_conjunct o ®) ¢ Q)). x < e6>
<Vx € ({max_negative_conjunct_depth ¢}
U ((max_neg_conj_depth_conjunct o ®) ¢ Q)). x < e7>
<Vx € ({negation_depth ¢} U ((neg_depth_conjunct o ®) ¢ Q)). x < e8>
using conj_single branch_single <1 + modal_depth_srbb ¢ < e6> by auto
hence
<(Sup ({stable_conjunction_depth ¢} U ((st_conj_depth_conjunct o ®) ¢ Q))) < ed>
<(Sup ({immediate_conjunction_depth ¢} U ((imm_conj_depth_conjunct o ®) ¢ Q))) < eb>
<(Sup ({1 + modal_depth_srbb ¢, max_positive_conjunct_depth ¢}
U ((max_pos_conj_depth_conjunct o ®) ¢ Q))) < e6>
<(Sup ({max_negative_conjunct_depth ¢} U ((max_neg_conj_depth_conjunct o ®) ¢ Q))) < e7>
<(Sup ({negation_depth ¢} U ((neg_depth_conjunct o ®) ¢ Q))) < e8>
using Sup_least
by metis+
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thus <expr_pr_inner (BranchConj a ¢ Q ®) < e>
using expr e3_le e2_le el_le e_def energy.sel leq_components by presburger
qed

lemma expressiveness_price_ImmConj_geq_parts:
assumes <i € I>
shows <expressiveness_price (ImmConj I ¢s) ~-E 0010100 0 > expr_pr_conjunct (¢s i)>
proof -
from assms have <I # {}> by blast
from expressiveness_price_ImmConj_non_empty_def [OF <I # {}>]
have <expressiveness_price (ImmConj I ¢s) > E 0010100 0>
using energy_leq_cases by force
hence
<expressiveness_price (ImmConj I ¢s) ~-E00101000=E
(Sup ((modal_depth_srbb_conjunct o s) ¢ I))
(Sup ((branch_conj_depth_conjunct o ts) ¢ I))
(Sup ((inst_conj_depth_conjunct o s) ¢ I))
(Sup ((st_conj_depth_conjunct o #s) ¢ I))
(Sup ((imm_conj_depth_conjunct o v¥s) ¢ I))
(Sup ((max_pos_conj_depth_conjunct o s) ¢ I))
(Sup ((max_neg_conj_depth_conjunct o s) ¢ I))
(Sup ((neg_depth_conjunct o ¥s) ¢ I))>
unfolding expressiveness_price_ImmConj_non_empty_def [OF <I # {}>]
by simp
also have <... > expr_pr_conjunct (¢¥s i)>
using assms <I # {}> SUP_upper unfolding leq_components by fastforce
finally show 7thesis
qed

lemma expressiveness_price_ImmConj_geq_parts’:

assumes <i € I»>

shows
< (expressiveness_price (ImmConj I ¢s) ~E00001000)-E0O0100000
> expr_pr_conjunct (¢s i)>

using expressiveness_price_ImmConj_geq_parts[0OF assms]
less_eq_energy_def minus_energy_def

by (smt (z3) energy.sel idiff_O_right)

Here, we show the prices for some specific formulas.

lemma example_¢_cp:
fixes op a b::<’a> and left right::<’s>
defines <p =
(Internal
(Obs op
(Internal
(Conj {left, right}
(Ai. Gf i = left
then (Pos (Obs a TT))
else if i = right
then (Pos (Obs b TT))
else undefined))))))»

shows
<modal_depth_srbb p = 2>
<branching_conjunction_depth ¢ = 0>
<unstable_conjunction_depth ¢ = 1>
<stable_conjunction_depth p = 0>
<immediate_conjunction_depth ¢ = 0>
<max_positive_conjunct_depth ¢ = 1>
<max_negative_conjunct_depth ¢ = 0>
<negation_depth e = 0>

unfolding ¢_def by simp+
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lemma <expressiveness_price (Internal
(Obs op
(Internal
(Conj {left, right}
(Ai. (if i = left

then (Pos (Obs a TT))

else if i = right
then (Pos (Obs b TT))
else undefined)))))) =E 2010010 0>

by simp

lemma <expressiveness_price TT=E 0000 0 0 0 0>
by simp

lemma <expressiveness_price (ImmConj {} ¢s) =E 0000000 0>
by (simp add: Sup_enat_def)

lemma <expressiveness_price (Internal (Conj {} #s)) =E 0000000 0>
by (simp add: Sup_enat_def)

lemma <expressiveness_price (Internal (BranchConj o TT {} #s)) =E 1110010 0>
by (simp add: Sup_enat_def)

lemma expr_obs_phi:
<subtract_fn 1 0 0 0 0 0 0 O (expr_pr_inner (Obs « ¢)) = Some (expressiveness_price ¢)>
by simp

end — pause lts_tau context

3.7 Characterizing Equivalence by Energy Coordinates

We can now define a sublanguage of Hennessy—Milner Logic O by the set of formulas with prices
below an energy coordinate.

definition O :: <energy = ((’a, ’s) hml_srbb) set> where
<O energy = {¢ . expressiveness_price ¢ < energyl}>

lemma O_sup: <UNIV = O (E 0o 0o 00 00 00 0o 0o 00)> unfolding O_def by auto

lemma price_hierarchy_entails_modal_hierarchy:
assumes <el < e2>
shows <O el C O e2>
using assms unfolding O_def by auto

definition (O_inner :: <emnergy = ((’a, ’s) hml_srbb_inner) set> where
<O_inner energy = {x . expr_pr_inner yx < energy}>

definition O_conjunct :: <energy = ((’a, ’s) hml_srbb_conjunct) set> where
<O_conjunct energy = {x . expr_pr_conjunct x < energyl}>

context lts_tau
begin

A state p pre-orders another state q with respect to some energy e if and only if p HML pre-orders
q with respect to the HML sublanguage O e.
definition expr_preord :: <’s = energy = ’s = bool> (<_ <X _ _> 60) where

<(p % e q) = preordered (O e) p q>

Conversely, p and q are equivalent with respect to e if and only if they are equivalent with respect
to that HML sublanguage O e.
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definition expr_equiv :: <’s = energy = ’s = bool> (<_ ~ _ _> 60) where
<(p ~ e q = equivalent (O e) p q>

lemma price_hierachy_preorder_dual:
assumes
<el < e2>
<p 2 e2gq>
shows
<p 2elaq
using assms price_hierarchy_entails_modal_hierarchy expr_preord_def by auto

3.8 Relational Effects of Prices

Certain properties of prices influence the preorder/equivalence relations that are characterized by
price coordinates. (This will be important for some behavioral equivalences that we will prove to

be characterized by specific prices.)

lemma distinction_combination_eta:
fixes p q
defines
Qa=4{q’. g » @ A Fp. p € O (Eoo oo oo 00o0000) A distinguishes ¢ p q’)}>

assumes
<p —a « p’)

<Vqg’€ Qua.
Vq’’ q’’’. @’ —a a q’’ — q’’ —» q’’’ — distinguishes (® q’’’) p’ q’’’>
shows

<Vq’€ Qo. hml_srbb_inner.distinguishes (Obs a (Internal (Conj
{q’’’. d9’€ Q. 3q’’. @> —ma a q’’ A q’’ —» q’’’}
(conjunctify_distinctions ® p’)))) p q’>
proof -
have <Vqg’€ Qu. Vq’’’€{q’’’. 3q¢’€ Qa. 3q’’. @’ ma a q’’ A q’’ —» q’’’}.
hml_srbb_conj.distinguishes ((conjunctify_distinctions ® p’) q’’’) p’ q’’’>
proof clarify
fix @’ @’ g’
assume <q’ € Qo> <q’ —a «a q’’> <q’’ —» q’’’>
thus <hml_srbb_conj.distinguishes (conjunctify_distinctions & p’ q’’’) p’ q’’’>
using assms(3) distinction_conjunctification by blast

qed
hence <Vq’€ Qa. Vq’’. q’ —a a q’°
— distinguishes (Internal (Conj {q’’’. 3q’€ Qa. 3q’’. q’ —a a q’’ A q’’ —» q’’’}

(conjunctify_distinctions ® p’))) p’ q’’>
using silent_reachable.refl unfolding Qa_def by fastforce
thus <Vq’€ Qo.
hml_srbb_inner.distinguishes (Obs o (Internal (Conj
{q’’’. 39’€ Q. 3q’’. @ —a a q’> AN qQ’’ —= q’’’}
(conjunctify_distinctions ® p’)))) p q’>
using assms(2) by (auto) (metis silent_reachable.refl)+

qed

lemma distinction_conjunctification_two_way_price:
assumes
<Vq€l. distinguishes (® q) p q V distinguishes (® q) q p>
<Vqg€el. $ g€ O (Eoco o0 00 00 0o 0o 00)>
shows
<Vq€el.
(if distinguishes (® q) p q
then conjunctify_distinctions
else conjunctify_distinctions_dual
) ® p g € O_conjunct (E 0o co co 0 0 co oo 00) >
proof
fix q
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assume <q € I>
show
<(if distinguishes (® q) p q
then conjunctify_distinctions
else conjunctify_distinctions_dual
) ® p g € O_conjunct (E 0o 0o co 0 0 co 0o 00) >
proof (cases <® qg>)
case TT
then show 7thesis
using assms <q € I>
by fastforce
next
case (Internal x)
then show 7thesis
using assms <q € I>
unfolding conjunctify_distinctions_def conjunctify_distinctions_dual_def (O_def O_conjunct_def
by fastforce
next
case (ImmConj J W)
hence <J = {}>
using assms <q € I> unfolding O_def
by (simp, metis iadd_is_O immediate_conjunction_depth.simps(3) zero_one_enat_neq(1))
then show ?7thesis
using assms <q € I> ImmConj by fastforce
qed
qed

lemma distinction_combination_eta_two_way:
fixes p qp’ @
defines
Qa=4{q’. g =>»>q@ A (Fp. p € O (E oo oo o000 0o oo o)
A (distinguishes ¢ p q’ V distinguishes ¢ q’ p))}> and
<Pa = Aq’’7. (
if distinguishes (® q’’’) p’ q’7°
then conjunctify_distinctions
else conjunctify_distinctions_dual

) @p g
assumes
<p —a a p’>
<Vq’€ Qa.
Vq)) q])7. q) Haaq)]_)q])%ql))

— distinguishes (® q’’’) p’ q’’’ V distinguishes (® q’’’) g’’’ p’>
shows
<Vq’€ Qa. hml_srbb_inner.distinguishes (Obs o (Internal (Conj
{q))J‘ que Qa‘ Hq’)‘ qJ }_)aaq)) /\q)J _}>q)’)}
Ya))) p q’>
proof -
have <Vqg’€ Qu. Vq’’’€{q’’’. 3q’€ Qa. Iq’’. @’ —ma a q’’ A q’’ —» q’’’}.
hml_srbb_conj.distinguishes (Ya q’’’) p’ q’’’>
proof clarify
fiX q) q)’ q))’
assume <q’ € Q> <q’ —a a q’’> <q’’ —» q’’’>
thus <hml_srbb_conj.distinguishes (PYa q’’’) p’ q’’’ >
using assms(4) Vo_def distinction_conjunctification_two_way mem_Collect_eq
by (smt (verit, best))
qed
hence <Vq’€ Qa. Vq’’’e€{q’’’. 3q9’€ Qu. 3q’’. @’ —a a q’’ A q’’ —» q’’’}.
hml_srbb_inner.distinguishes (Conj {q’’’. dq’€ Qa. 3q’’. @’ —a a q’’ AN q’’ —» q’’’}
Ta) p’ q’’’>
using srbb_dist_conjunct_implies_dist_conjunction
unfolding lts_semantics.distinguishes_def
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by (metis (no_types, lifting))
hence <Vq’€ Qa. Vq’’’. (3q’’. @ —a a q’’ AN qQ’’ —» q’’) —
hml_srbb_inner.distinguishes
(Conj {q’’’. 3q9’€ Qo. 3q’’. @’ ma a q’’ A q’’ —» q’’} Ya) p’ q’’°>
by blast
hence <Vq’€ Qa. Vq’’. q’ +—a a q’’ — distinguishes
(Internal (Conj {q’’’. dq9’€ Q. 3q’’. @’ —ma a q’’ A qQ’’ —» q’ "’} Ya)) p’ q’’>
by (meson distinguishes_def hml_srbb_inner.distinguishes_def
hml_srbb_models.simps(2) silent_reachable.refl)
thus <Vq’€ Qa. hml_srbb_inner.distinguishes
(0bs « (Internal (Conj {q’’’. 3q’€ Qa. 3q’’. @’ —a a q’’ A q’’ —» q’’’} Ya))) p q’>
using assms(3)
by auto (metis silent_reachable.refl)+
qed

lemma distinction_conjunctification_price:
assumes
<Vq€l. distinguishes (® q) p q>
<Vq€I. & q € O pr>
<modal_depth pr < pos_conjuncts pr>
shows
<Vq€I. ((conjunctify_distinctions ® p) q) € O_conjunct pr>
proof
fix q
assume <q € I>
show <conjunctify_distinctions ® p q € O_conjunct pr>
proof (cases <® qg>)
case TT
then show 7thesis
using assms <q € I>
by fastforce
next
case (Internal x)
then show 7thesis
using assms <q € I>
unfolding conjunctify_distinctions_def (O_def (O _conjunct_def
by fastforce
next
case (ImmConj J W)
hence <3i. i€J A hml_srbb_conj.distinguishes (¥ i) p g>
using <q € I> assms(l) by fastforce
moreover have <conjunctify_distinctions ¢ p q
= ¥ (SOME i. i€J A hml_srbb_conj.distinguishes (¥ i) p q)>
unfolding ImmConj conjunctify_distinctions_def by simp
ultimately have W_i:
<3i€J. hml_srbb_conj.distinguishes (¥ i) p q A conjunctify_distinctions & p q = ¥ i>
by (metis (no_types, lifting) some_eq_ex)
hence <conjunctify_distinctions ® p q € U‘J>
unfolding image_iff by blast
hence
<expr_pr_conjunct (conjunctify_distinctions ® p q)
< expressiveness_price (ImmConj J U)>
by (smt (verit, best) W_i dual_order.trans expressiveness_price_ImmConj_geq_parts
gets_smaller)
then show ?7thesis
using assms <q € I> ImmConj unfolding O_def O_conjunct_def by auto
qed
qed

lemma modal_stability_respecting:
<stability_respecting (preordered (O (E el e2 e3 oo eb oo e7 e8)))>

41



unfolding stability_respecting_def
proof safe
fix pq
assume p_stability:
<preordered (O (E el e2 e3 oo e5 0o e7 e8)) p q>
<stable_state p~>
have <—(Vq’. q = q’
— — preordered (O (E el e2 e3 oo e5 00 e7 e8)) p q’ V — stable_state q’)>
proof safe
assume <Vq’. q —» q’
— — preordered (O (E el e2 e3 0o e5 00 e7 e8)) p q’° V — stable_state q’>
hence <Vq’. q —» q’ — stable_state q’
— (Gp € O (E el e2 e3 o0 eb o0 e7 e8). distinguishes ¢ p q’)> by auto
then obtain ® where ®_def:
<Vq’€(silent_reachable_set {q}). stable_state q’
— distinguishes (® q’) pq’ A ® q° € O (E el e2 e3 00 eb 0o e7 e8)>
using singleton_iff sreachable_set_is_sreachable by metis
hence distinctions:
<Vq’€(silent_reachable_set {q} N {q’. stable_state q’}). distinguishes (® q’) p q’>
<Vq’€(silent_reachable_set {q} N {q’. stable_state q’}).
® g’ € O (E el e2 e3 o0 e5 0o e7 e8)> by blast+
from distinction_conjunctification_price[0OF this] have
<Vq’€(silent_reachable_set {q} N {q’. stable_state q’}).
conjunctify_distinctions ® p q’ € O_conjunct (E el e2 e3 0o eb oo e7 e8)>
by fastforce
hence conj_price: <StableConj (silent_reachable_set {q} N {q’. stable_state q’})
(conjunctify_distinctions ® p) € O_inner (E el e2 e3 oo eb oo e7 e8)>
unfolding O_inner_def O_conjunct_def using SUP_le_iff by fastforce
from ®_def have
<Vq’€(silent_reachable_set {q}). stable_state q’
— hml_srbb_conj.distinguishes (conjunctify_distinctions ® p q’) p q’>
using singleton_iff distinction_conjunctification by metis
hence <hml_srbb_inner.distinguishes_from
(StableConj (silent_reachable_set {q} N {q’. stable_state q’})
(conjunctify_distinctions ® p)) p (silent_reachable_set {qg})>
using p_stability(2) by fastforce
hence
<distinguishes
(Internal (StableConj (silent_reachable_set {q} N {q’. stable_state q’})
(conjunctify_distinctions ¢ p))
)
p 9
unfolding silent_reachable_set_def
using silent_reachable.refl by auto
moreover have
<Internal (StableConj (silent_reachable_set {q} N {q’. stable_state q’})
(conjunctify_distinctions ® p)) € O (E el e2 e3 oo e5 oo e7 e8)>
using conj_price unfolding O_def (O_inner_def by simp
ultimately show False
using p_stability(1l) preordered_no_distinction by blast
qed
thus <3q’. q —» q’ A preordered (O (E el e2 e3 0o eb o0 e7 e8)) p q’ A stable_state q’>
by blast
qed

end

end
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4 Weak Traces

theory Weak_Traces
imports Main HML_SRBB Expressiveness_Price
begin

The point of this theory is to prove that the coordinate E co 0 0 0 0 0 0 0 precisely characterizes
weak trace preorder and equivalence.

4.1 Weak Traces as Modal Constructs

inductive
is_trace_formula :: <(’act, ’i) hml_srbb = bool> and
is_trace_formula_inner :: < (’act, ’i) hml_srbb_inner = bool>
where

<is_trace_formula TT> |
<is_trace_formula (Internal y)> if <is_trace_formula_inner x> |
<is_trace_formula (ImmConj I #s)> if <I = {}> |

<is_trace_formula_inner (Obs « ¢)> if <is_trace_formula ¢> |
<is_trace_formula_inner (Conj I v¥s)> if <I = {}>

We define a function that translates a (weak) trace tr to a formula ¢ such that a state p models
», p | ¢ if and only if tr is a (weak) trace of p.

fun
wtrace_to_srbb :: <’act list = (’act, ’i) hml_srbb> and
wtrace_to_inner :: <’act list = (’act, ’i) hml_srbb_inner> and
wtrace_to_conjunct :: <’act list = (’act, ’i) hml_srbb_conjunct>
where

TT> |
(Internal (wtrace_to_inner tr))> |

<wtrace_to_srbb []
<wtrace_to_srbb tr

<wtrace_to_inner [] = (Conj {} (A_. undefined))> | — Should never happen
<wtrace_to_inner (a # tr) = (Obs « (wtrace_to_srbb tr))> |

<wtrace_to_conjunct tr = Pos (wtrace_to_inner tr)> — Should never happen

lemma trace_to_srbb_is_trace_formula:
<is_trace_formula (wtrace_to_srbb trace)>
by (induct trace,
auto simp add: is_trace_formula.simps is_trace_formula_is_trace_formula_inner.intros(1,4))

4.2 'Weak Trace Observations through Coordinates

The following three lemmas show that the modal-logical characterization of weak traces corresponds
to the sublanguage of HMLgrpp, obtain by the energy coordinates (oo, 0, 0, 0, 0, 0, 0, 0).

lemma trace_formula_to_expressiveness:

fixes

@ :: <(act, ’i) hml_srbb> and

X :: <(C’act, ’i) hml_srbb_inner>
shows < (is_trace_formula ¢ — (p € O (Eoc 00

A (is_trace_formula_inner x — (x € O_inner (E co 0 0
by (rule is_trace_formula_is_trace_formula_inner.induct)
(simp add: Sup_enat_def O_def O_inner_def)+

oS o
o o
o o
o o

lemma expressiveness_to_trace_formula:
fixes
@ :: <(Pact, ’i) hml_srbb> and
X :: <(C’act, ’i) hml_srbb_inner>
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shows <(p € O (Eoco 0000
A (x € O_inner (E o0 0
A True>
proof (induct rule: hml_srbb_hml_srbb_inner_hml_srbb_conjunct.induct)
case TT

) — is_trace_formula ¢)

000
00000 0) — is_trace_formula_inner x)

then show 7case
using is_trace_formula_is_trace_formula_inner.intros(1l) by blast
next
case (Internmal x)
then show 7case
by (simp add: O_inner_def O_def is_trace_formula_is_trace_formula_inner.intros(2))
next
case (ImmConj x1 x2)
then show 7case
using (O_def is_trace_formula_is_trace_formula_inner.intros(3)
by(auto simp add: O_def)
next
case (Obs x1 x2)
then show 7case by (simp add: O_def (O_inner_def is_trace_formula_is_trace_formula_inner.intros(4))
next
case (Conj I %s)
show 7case
proof (rule impI)
assume <Conj I %¢s € O_inner (E oo 0 0 0 0 0 0 0)>
hence <I = {}>
unfolding O_inner_def
by (metis bot.extremum_uniquel bot_enat_def energy.sel(3) expr_pr_inner.simps
inst_conj_depth_inner.simps(2) le_iff_add leq_components
mem_Collect_eq not_one_le_zero)
then show <is_trace_formula_inner (Conj I ts)>
by (simp add: is_trace_formula_is_trace_formula_inner.intros(5))
qed
next
case (StableConj I s)
show 7case
proof (rule impI)
assume <StableConj I ¥s € O_inner (E c©
have <StableConj I ¢s ¢ O_inner (E oo O
by (simp add: O_inner_def)
with <StableConj I t¢s € O_inner (E co 0 0 0 0 0 0 0)>
show <is_trace_formula_inner (StableConj I s)> by contradiction
qed
next
case (BranchConj a ¢ I s)
have <expr_pr_inner (BranchConj o ¢ I ¢ys) > E 0110000 0>
by simp
hence <BranchConj o ¢ I ¢s ¢ O_inner (E 0o 0 0 0 0 0 0 0)>
unfolding O_inner_def by simp
thus 7case by blast
next

0000000
000000

case (Pos x)

then show ?case by auto
next

case (Neg x)

then show ?case by auto
qed

lemma modal_depth_only_is_trace_form:

< (is_trace_formula ¢) = (p € O (E o0 00000 0 0))>
using expressiveness_to_trace_formula trace_formula_to_expressiveness by blast
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context lts_tau
begin

If a trace formula ¢ is satisfied by a state p then there exists a weak trace tr of p such that
wtrace_to_srbb tr is equivalent to ¢.

lemma trace_formula_implies_trace:
fixes
¥ ::<(’a, ’s) hml_srbb_conjunct>
shows
<is_trace_formula ¢ = p =SRBB ¢
—> Jtr € weak_traces p. wtrace_to_srbb tr &srbb= >
<is_trace_formula_inner xy = hml_srbb_inner_models q X
—> dtr € weak_traces q. wtrace_to_inner tr &x= x>
True
proof (induction ¢ and X and v arbitrary: p and q)
case TT
thus 7case
using weak_step_sequence.intros(l) silent_reachable.intros(1l) by fastforce
next
case (Internal x)
hence <is_trace_formula_inner x>
using is_trace_formula.cases by blast
from <p |=SRBB Internal x>
have <3Jp’. p — p’ A hml_srbb_inner_models p’ x>
unfolding hml_srbb_models.simps
then obtain p’ where <p —» p’> <hml_srbb_inner_models p’ x> by auto
hence <hml_srbb_inner_models p’ x> by auto
with <is_trace_formula_inner x>
have <Jtrcweak_traces p’. wtrace_to_inner tr &x= x>
using Internal by blast
then obtain tr where tr_spec:
<tr € weak_traces p’> <wtrace_to_inner tr <&x= x> by auto
with <p — p’> have <tr € weak_traces p~>
using silent_prepend_weak_traces by auto
moreover have <wtrace_to_srbb tr <&srbb= Internal x>
proof (cases tr)
case Nil
thus ?7thesis
using srbb_TT_is_xTT tr_spec by auto
next
case (Cons a tr)
thus 7thesis
using tr_spec internal_srbb_cong
by (metis wtrace_to_srbb.simps(2))
qed
ultimately show 7case by blast
next
case (ImmConj I os)
from <is_trace_formula (ImmConj I ¢s)>
have <I = {}>
by (simp add: is_trace_formula.simps)
have <[] € weak_traces p>
using silent_reachable.intros(1l) weak_step_sequence.intros(1l) by auto
have <wtrace_to_srbb [] &srbb= ImmConj I s>
using srbb_TT_is_empty_conj <I = {}>
unfolding wtrace_to_srbb.simps by auto
thus <JtrE€weak_traces p. wtrace_to_srbb tr &srbb= ImmConj I s>
using <[] € weak_traces p> by auto
next
case (Obs a ¢)
thus 7case
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proof (cases <a = 7>)
case True
with <hml_srbb_inner_models q (Obs « ¢)> have <q =SRBB ¢>
using Obs.prems(1l) silent_reachable.step empty_conj_trivial(1l)
by (metis (no_types, lifting) hml_srbb_inner.distinct(1) hml_srbb_inner.inject(1)
hml_srbb_inner_models.simps(1) hml_srbb_models.simps(1,2) is_trace_formula.cases
is_trace_formula_inner.cases)
moreover have <is_trace_formula ¢>
using <is_trace_formula_inner (Obs « ¢)> is_trace_formula_inner.cases by auto
ultimately show <dtr € weak_traces q. wtrace_to_inner tr &x= 0bs a ¢>
using Obs.IH
by (metis <a = 7> obs_srbb_cong prepend_7_weak_trace wtrace_to_inner.simps(2))
next
case False
from <is_trace_formula_inner (Obs a ¢)>
have <is_trace_formula ¢>
by (simp add: is_trace_formula_inner.simps)
from <hml_srbb_inner_models q (Obs « ¢)> and <« # 7>
have <3q’. q — a q’ A @’ ESRBB ¢> by simp
then obtain q’ where <q — « q’> <q’ ESRBB ¢> by auto
hence <Jtr’ € weak_traces q’. wtrace_to_srbb tr’ &srbb= >
using <is_trace_formula ¢> 0Obs by auto
then obtain tr’ where <tr’ € weak_traces q’> <wtrace_to_srbb tr’ <srbb= > by auto
have <(a # tr’) € weak_traces q>
using <q +— « q’> <tr’ € weak_traces q’> step_prepend_weak_traces by auto
from <wtrace_to_srbb tr’ &srbb= ¢
have <0Obs « (wtrace_to_srbb tr’) &x= 0bs a ¢>
using obs_srbb_cong by auto
then have <wtrace_to_inner (a # tr’) &x= 0Obs a ¢>
unfolding wtrace_to_inner.simps.
with <(a # tr’) € weak_traces gq>
show <dtr € weak_traces q. wtrace_to_inner tr <x= 0bs a ¢> by blast
qed
next
case (Conj I ts)
from <is_trace_formula_inner (Conj I t¢s)> have <I = {}>
by (simp add: is_trace_formula_inner.simps)
have <(Conj {} (A_. undefined)) &x= (Conj {} vs)>
using srbb_obs_7_is_xTT by simp
then have <(Conj {} (A_. undefined)) &x= (Conj I ¥s)>
using <I = {}> by auto
then have <wtrace_to_inner [] &x= Conj I ts>
unfolding wtrace_to_inner.simps.
with empty_trace_allways_weak_trace[of q] show 7case by auto
ged (auto simp add: is_trace_formula_inner.simps)

lemma trace_equals_trace_to_formula:
<t € weak_traces p <— p =SRBB (wtrace_to_srbb t)>
proof
assume <t € weak_traces p>
show <p |=SRBB (wtrace_to_srbb t)>
using <t € weak_traces p>
proof (induction t arbitrary: p)
case Nil
then show 7?case
by simp
next
case (Cons a tail)
then obtain p’’ p’ where <p —»——» a p’’> <p’’ —»—>—»$ tail p’>
using weak_step_sequence.simps
by (smt (verit, best) list.discI list.inject mem_Collect_eq)
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with Cons(1) have IS: <p’’ |=SRBB wtrace_to_srbb tail>
by blast
from Cons have <wtrace_to_srbb (a # tail) = (Internal (Obs a (wtrace_to_srbb tail)))>
by simp
thus 7case
by (smt (verit) Comns.IH IS lts_tau.hml_srbb_inner_models.simps(1)
lts_tau.silent_reachable_trans <p —»+—» a p’’> empty_trace_allways_weak_trace
hml_srbb_models.simps(2) weak_step_def wtrace_to_srbb.elims)
qed
next
assume <p [=SRBB wtrace_to_srbb t>
then show <t € weak_traces p>
proof (induction t arbitrary: p)
case Nil
then show 7case
using weak_step_sequence.intros(1l) silent_reachable.intros(1l) by auto
next
case (Cons a tail)
hence <p |=SRBB (Internal (Obs a (wtrace_to_srbb tail)))>
by simp
thus 7case
using Cons prepend_7_weak_trace silent_prepend_weak_traces step_prepend_weak_traces
by fastforce
qed
qed

lemma expr_preorder_characterizes_relational_preorder_traces:
<(p SWT' q) =(p X (Eoc0oc0000000) q)>
unfolding expr_preord_def preordered_def
proof
assume <p SWT g>
thus <V9p€® (E oo 000000O0). p=SRBB ¢ — q [=SRBB ¢>
using expressiveness_to_trace_formula trace_equals_trace_to_formula
trace_formula_implies_trace
unfolding weakly_trace_preordered_def
by (metis (no_types, lifting) eq_equality in_momno)
next
assume ¢_eneg: <Vp€O (E 0o 00000 0O0). p=SRBB ¢ — q SRBB ¢>
thus <p <WT g»
unfolding weakly_trace_preordered_def
using trace_equals_trace_to_formula trace_formula_to_expressiveness
trace_to_srbb_is_trace_formula
by fastforce
qed

Two states p and q are weakly trace equivalent if and only if they they are equivalent with respect
to the coordinate (oo, 0, 0, 0, 0, 0, 0, 0).

theorem weak_traces_coordinate: <(p ~WT q) = (p ~ (Eo0 000000 0) q>
using expr_preorder_characterizes_relational_preorder_traces
unfolding weakly_trace_equivalent_def expr_equiv_def (O_def expr_preord_def
by simp

end

end
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5 y»-Bisimilarity and ,-Similarity

theory Eta_Bisimilarity
imports Expressiveness_Price
begin

n-Bisimilarity and n-Similarity are comparably arcane notions of behavioral equivalence. We show
that they are characterized by coordinates E co oo co 0 0 oo co oo and E co co oo 0 0 co 0 0 as
an illustration of how to connect coordinates and relational characterizations of equivalences.

5.1 Definition and Properties of »-(Bi-)Similarity

context lts_tau
begin

We characterize n-bisimilarity through symmetric n-simulations.

definition eta_simulation :: <(’s = ’s = bool) = bool> where
<eta_simulation R = Vp a p’ 9. Rpgq — p—~ ap’” —
(a =7 AR P’ Qq
\/(Elq) q}) q)?).q_>>qi/\q)'_>oéq))/\q)7_>>q)7} /\qu)/\Rpl q))7)>

definition eta_bisimulated :: <’s = ’s = bool> (infix <~n> 40) where
<p ~n q = JR. eta_simulation R A symp R A R p g>

lemma eta_bisim_sim:
shows <eta_simulation (~7)>
unfolding eta_bisimulated_def eta_simulation_def by blast

lemma eta_bisim_sym:
assumes <p ~n q>
shows <q ~n p>
using assms unfolding eta_bisimulated_def
by (meson sympD)

lemma silence_retains_eta_sim:
assumes
<eta_simulation R>
<R p g>
<p —>» p’>
shows <3q’. Rp’ @’ A q = q’>
using assms(3,2)
proof (induct arbitrary: q)
case (refl p)
then show ?7case
using silent_reachable.refl by blast
next
case (step p p’ p’’)
then obtain q’ where <R p’ q’> <q — q’>
using <eta_simulation R> silent_reachable.refl
silent_reachable_append_7 silent_reachable_trans
unfolding eta_simulation_def by blast
then obtain q’’ where <R p’’ q’’> <q’ — q’’> using step by blast
then show ?7case
using <q —» q’> silent_reachable_trans by blast
qed

lemma eta_bisimulated_silently_retained:
assumes
<p ~m q°
<p —» p’>
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shows
<dq’. 9 = q’ A p’ ~n q’> using assms(2,1)
using silence_retains_eta_sim unfolding eta_bisimulated_def by blast

5.2 Logical Characterization of n-Bisimilarity through Expressiveness
Price

lemma logic_eta_bisim_invariant:
assumes
<p0 ~n q0>
<p € O (E 00 00 00 00 00 00 00)>
<p0 =SRBB ¢>
shows <q0 [=SRBB >
proof -
have <Ay x ¥.
WVpa.pnq— 9 €O (Eocoocooo0O0oo oo o) — p | ESRBB ¢ — q E=SRBB ) A
(Vpa. p~nq— x € O_inner (E 00 00 00 0 0 00 00 00)
— hml_srbb_inner_models p x — (3q’. q — q’ A hml_srbb_inner_models q’ X)) A
Vpq. p~nq— 9 € O_conjunct (E 0o 0o 00 0 0 0o 00 00)
— hml_srbb_conjunct_models p 1y — hml_srbb_conjunct_models q ) >
proof -
fix ¢ X ¢
show
<(Vpqg.pngqg— ¢ € O (Eoooooo 000 oo o0) — p E=SRBB o — g ESRBB ¢) A
Vpqg. p~nqg— x € O_inner (E 0o oo o0 0 0 0o 0o 00)
— hml_srbb_inner_models p x — (3q’. q —» g’ A hml_srbb_inner_models q’ x)) A
(Vpa. p~naq— ¢ € O_conjunct (E 0o oo co 0 0 oo co 00)
— hml_srbb_conjunct_models p 1 — hml_srbb_conjunct_models q ) >
proof (induct rule: hml_srbb_hml_srbb_inner_hml_srbb_conjunct.induct)
case TT
then show 7case by simp
next
case (Internal x)
show 7case
proof safe
fix p q
assume case_assms:
<p ~n > <p [=SRBB hml_srbb.Internal x> <Internal x € O (E 0o 0o 00 0 0 00 00 00)>
then obtain p’ where p’_spec: <p —» p’> <hml_srbb_inner_models p’ x> by auto
have <x € O_inner (E oo co 0o 0 0 co 0o o0) >
using case_assms(3) unfolding O_inner_def (O_def by auto
hence <dq’. 9 — q’ A hml_srbb_inner_models q’ x>
using Internal case_assms(l) p’_spec eta_bisimulated_silently_retained
by (meson silent_reachable_trans)
thus <q =SRBB hml_srbb.Internal x> by auto
gqed
next
case (ImmConj I W)
then show 7case unfolding O_inner_def (O_def by auto
next
case (Obs a @)
then show 7case
proof (safe)
fix pq
assume case_assms:
<p ~n q’>
<0bs o ¢ € O_inner (E 0o 00 00 0 0 00 00 00) >
<hml_srbb_inner_models p (hml_srbb_inner.0bs «a ¢)>
hence < € O (E 0o 00 00 0 0 co 0o o0)> unfolding O_inner_def O_def by auto
hence no_imm_conj: <AI W. ¢ = ImmConj I ¥ A I # {}> unfolding O_def by force
have back_step: <VpO pl. pl =SRBB ¢ — p0 —» pl — p0 =SRBB ¢>
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proof (cases )
case TT
then show 7thesis by auto
next
case (Internal _)
then show 7thesis
using silent_reachable_trans by auto
next
case (ImmConj _ _)
then show 7thesis using no_imm_conj by auto
qed
from case_assms obtain p’ where <p —a « p’> <p’ ESRBB ¢> by auto
then obtain q’ q’’ q’’’ where <q —» q’> <q’ —a o q’’> <q’’ —» q’’’> <p’ ~nq’’’>
using <p ~7 q> eta_bisim_sim unfolding eta_simulation_def
using silent_reachable.refl by blast
hence <q’’’ |=SRBB ¢>
using <p’ ESRBB ¢> Obs <o € O (E 00 00 00 0 0 00 o0 00)> by blast
hence <hml_srbb_inner_models q’ (hml_srbb_inner.0bs « ¢)>
using <q’ —a o q’’> <q’’ —» q’’’> back_step by auto
thus <3q’. 9 =% q’ A hml_srbb_inner_models q’ (hml_srbb_inner.Obs o ¢)>
using <q —» q’> by blast
qed
next
case (Conj I W)
show 7case
proof safe
fix pq
assume case_assms:
<p -n q>
<Conj I ¥ € O_inner (E co oo o0 0 0 oo oo 00) >
<hml_srbb_inner_models p (Conj I W)>
hence conj_price: <Vi€I. ¥ i € O_conjunct (E 0o 0o 0o 0 0 oo 0o 00) >
unfolding O_conjunct_def (O_inner_def
by (simp, metis SUP_bot_conv(l) le_zero_eq sup_bot_left sup_gel)
from case_assms have <Vi€I. hml_srbb_conjunct_models p (¥ i)> by auto
hence <Vi€I. hml_srbb_conjunct_models q (V¥ 1i)>
using Conj <p ~m q> conj_price by blast
hence <hml_srbb_inner_models q (hml_srbb_inner.Conj I ¥)> by simp
thus <3q’. 9 — @’ A hml_srbb_inner_models q’ (hml_srbb_inner.Conj I W¥)>
using silent_reachable.refl by blast
qed
next
case (StableConj I W)
thus 7case unfolding (O_inner_def (O_def by auto
next
case (BranchConj a ¢ I W)
show 7case
proof safe
fixpq
assume case_assms:
<p -n q>
<BranchConj a ¢ I ¥ € O_inner (E oo 0o 0o 0 0 0o 0o 00) >
<hml_srbb_inner_models p (BranchConj a ¢ I W¥)>
hence <¢p € O (E 00 00 00 0 0 0o 0o 00)> unfolding O_inner_def (O_def
by (simp, metis le_zero_eq sup_gel)
hence no_imm_conj: <AI ¥. ¢ = ImmConj I ¥ A I # {}> unfolding O_def by force
have back_step: <VpO pl. pl =SRBB ¢ — pO0 —» pl — pO =SRBB >
proof (cases ()
case TT
then show 7thesis by auto
next
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case (Internal _)
then show 7thesis
using silent_reachable_trans by auto
next
case (ImmConj _ _)
then show ?7thesis using no_imm_conj by auto
qed
from case_assms have conj_price: <Vi€Il. ¥ i € O_conjunct (E 0o co oo 0 0 co oo 00) >
unfolding O_conjunct_def (O_inner_def
by (simp, metis SUP_bot_conv(l) le_zero_eq sup_bot_left sup_gel)
from case_assms have <Vi€I. hml_srbb_conjunct_models p (¥ i)>
<hml_srbb_inner_models p (0bs a ¢)>
using branching_conj_parts branching_conj_obs by blast+
then obtain p’ where <p —a a p’> <p’ ESRBB > by auto
then obtain q’ q’’ q’’’ where q’_q’’_spec:
<q = q’> <q’ —a o q’’> <q’’ —» q’’’>
<p -n q’> <p’ ~n q’’’>
using eta_bisim_sim <p ~n q> silent_reachable.refl
unfolding eta_simulation_def by blast
hence <q’’’ =SRBB >
using BranchConj.hyps <p’ =SRBB ¢> <¢p € O (E 0o 0o 0o 0 0 0o 0o c0)> by auto
hence <q’’ =SRBB ¢> using back_step q’_q’’_spec by blast
hence <hml_srbb_inner_models q’ (Obs « ¢)> using q’_q’’_spec by auto
moreover have <Vi€I. hml_srbb_conjunct_models q’ (¥ i)>
using BranchConj.hyps <Vi€I. hml_srbb_conjunct_models p (¥ i)> q’_q’’_spec conj_price
by blast
ultimately show <3q’. q — q’ A hml_srbb_inner_models q’ (BranchConj a ¢ I W¥)>
using <q —» q’> by auto
qed
next
case (Pos Y)
show 7case
proof safe
fixpq
assume case_assms:
<p -n q>
<Pos x € O_conjunct (E co 0o 00 0 0 0o 00 00) >
<hml_srbb_conjunct_models p (Pos x)>
hence <x € O_inner (E co oo o0 0 0 oo oo 00) >
unfolding O_inner_def O_conjunct_def by simp
from case_assms obtain p’ where <p —» p’> <hml_srbb_inner_models p’ x> by auto
then obtain g’ where <q — q’> <hml_srbb_inner_models q’ x>
using Pos <p ~n > <x € O_inner (E oo 0o 0o 0 0 0o 0o 00)>
by (meson eta_bisimulated_silently_retained silent_reachable_trans)
thus <hml_srbb_conjunct_models q (Pos x)> by auto
qed
next
case (Neg x)
show 7case
proof safe
fix pq
assume case_assms:
<p -n q>
<Neg x € O_conjunct (E co 0o 00 0 0 0o 00 00) >
<hml_srbb_conjunct_models p (Neg x)>
hence <x € O_inner (E co 0o 00 0 0 oo oo 00) >
unfolding O_inner_def O_conjunct_def by simp
from case_assms have <Vp’. p —» p’ — —hml_srbb_inner_models p’ x> by simp
moreover have
<(3q’. 9 - q’ A hml_srbb_inner_models q’ X)
— (dp’. p —» p’ A hml_srbb_inner_models p’ x)>
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using Neg eta_bisim_sym[0OF <p ~n q>] eta_bisimulated_silently_retained
silent_reachable_trans <x € O_inner (E co co co 0 0 co oo o0)> by blast
ultimately have <Vq’. q — q’ — —hml_srbb_inner_models q’ x> by blast
thus <hml_srbb_conjunct_models q (Neg x)> by simp
qed
qed
qed
thus 7thesis using assms by blast
qed

lemma modal_eta_sim_eq: <eta_simulation (equivalent (O (E oo 0o 00 0 0 0o 0o o0)))>
proof -
have <#p a p’ q. (equivalent (O (E 0o 00 00 0 0 00 00 00))) P q A p = a p’ A
(a0 # 7 V —(equivalent (O (E co co 0o 0 0 co 0o o0))) p’ @) A
(vq7 q;:q;;:_q%q)_>q),_>aq))_>q))_»q));
— = equivalent (O (E 0o 00 00 0 0 00 00 00)) p q’
V - equivalent (O (E 0o 00 00 0 0 00 0o o0)) p’ q’’’)>
proof clarify
fix pap’ q
define Qo where
Qe =4{q’. g =» @’ A Fp. pcO (E o0 o0 0o 0 0 0o 0o o)
A (distinguishes ¢ p q’ V distinguishes ¢ q’ p))}>
assume contradiction:
<equivalent (O (E oo oo 0o 0 0 0o 0o 00)) p 9> <p — « p’>
Vg’ q9’? @’’. g »q — q =~ aq’ —q’ »q”
— - equivalent (O (E 00 00 00 0 0 o0 o0 00)) p q’
V — equivalent (O (E co co oo 0 0 oo oo 00)) p’ q’?’>
<a # 7 V - equivalent (O (E oo o0 00 0 0 oo oo 00)) p’ q>
hence distinctions: <Vq’. q —% q’° —
(FpeO (E co 00 00 0 0 0o 0o 00). distinguishes ¢ p q’ V distinguishes ¢ q’ p) V
Vg’ @’’’. @ —maaq’ — q’ —»q’
— (€O (E 0o 0o 00 0 0 oo o0 00).
distinguishes ¢ p’ q’’’ V distinguishes ¢ q’’’ p’))>
unfolding equivalent_no_distinction
by (metis silent_reachable.cases silent_reachable.refl)
hence <Vq’’ q’’’ . Vq’€Qa. q’° —a a q’’ — q’’ —» q’”’
— (e (E 0o 00 o0 0 0 00 00 0).
distinguishes ¢ p’ q’’’ V distinguishes ¢ q’’’ p’)>
unfolding Qo_def using silent_reachable.refl by fastforce
hence <Vq’’ q’?’. q’’ —» q’’’ — (3q’. g =» q’ A (Fy. pe® (E o0 00 00 0 0 00 00 00)
A (distinguishes ¢ p q’ V distinguishes ¢ q’ p)) A q’ —a a q’’)
— (€O (E 0o 00 00 0 0 00 00 00).
distinguishes ¢ p’ q’’’ V distinguishes ¢ q’’’ p’)>
unfolding Qa_def by blast
hence <Vq’’’. (3q’ q’’. q = q’ A (Fp. €O (E 00 00 00 0 0 00 00 ©0)

A (distinguishes ¢ p q’ V distinguishes ¢ q’ p)) A qQ’ —ma a q’’ A q’’ — q’’?)

— (FpeO (E 00 00 00 0 0 co 00 00).
distinguishes ¢ p’ q’’’ V distinguishes ¢ q’’’ p’)>
by blast
then obtain ®a where Pa_def:
Vg’’’ (3q’ q@°?. g » g’ A (Bp. peO (E 00 00 00 0 0 00 0o 00)
A (distinguishes ¢ p q’ V distinguishes ¢ q’ p)) A qQ’ —a a q’’ A q’’ —» q’’’)
— (Pa q’’?) € O (E 00 00 00 0 0 00 00 00)
A (distinguishes (®a q’’’) p’ q’’’ V distinguishes (Pa q’’’) q’’’ p’)> by metis
hence distinctions_a: <Vq’€Qu. Vq’’ q’’’.
q) Haaq” Hq)}%}q))}
— distinguishes (®a q’’’) p’ q’’’ V distinguishes (Pa q’’’) q’’’ p’>
unfolding Qo_def by blast
from distinctions obtain $7 where
<Vq’. @’€{q’. @ » q> A (FpeO (E 0o 0o o0 0 0 0o 0o 00).
distinguishes ¢ p q’ V distinguishes ¢ q’ p)}
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— (distinguishes (®n q’) p q’ V distinguishes (®n q’) q’ p)
AN (Pn q’) € O (E oo oo oo 00 oo oo 00)>
unfolding mem_Collect_eq by moura
hence
<Vq’e{q’. 9 - q> A (3peO (E 0o 0o 00 0 0 00 00 00).
distinguishes ¢ p q’ V distinguishes ¢ q’ p)}.
(distinguishes (Pn q’) p q’ V distinguishes (®n q’) q’ p)>
<Vq’e{q’. 9 » g A (FpeO (E 0o 00 00 0 0 0o 00 00).
distinguishes ¢ p q’ V distinguishes ¢ q’ p)}.
(Pn q’) € O (E o0 00 00 0 0 0o 00 00) >
by blast+
from distinction_conjunctification_two_way[OF this(1)]
distinction_conjunctification_two_way_price[0OF this]
have <Vq’€{q’. q = q@’ A (FpeO (E 0o 0o 0o 0 0 0o 0o 00).
distinguishes ¢ p q’ V distinguishes ¢ q’ p)}.
hml_srbb_conj.distinguishes (
(if distinguishes (®7n q’) p q’
then conjunctify_distinctions
else conjunctify_distinctions_dual) ®n p q’) p q’
A (if distinguishes (®n q’) p q’
then conjunctify_distinctions
else conjunctify_distinctions_dual) ®n p q° € O_conjunct (E co oo 0o 0 0 0o oo 00) >
by fastforce
then obtain Wy where distinctions_7n:
<Vq’e{q’. 9 » q> A (FpeO (E 0o co 00 0 0 oo o0 00).
distinguishes ¢ p q’ V distinguishes ¢ q’ p)}.
hml_srbb_conj.distinguishes (¥n q’) p q’
A ¥n q’ € O_conjunct (E 0o o0 00 0 0 0o oo 00) >
by auto
have <p —a « p’> using <p — « p’> by simp
from distinction_combination_eta_two_way[0F this, of q ®al] distinctions_a have obs_dist:
<Vq’€Qo.
hml_srbb_inner.distinguishes (

Obs o (Internal (Conj {q’’’. dq9’€Qa. 3Iq’’. q’ —a a q’’ A q’’ —» q’’’}
(Aq’?’. (if distinguishes (®a q’’’) p’ q’’’
then conjunctify_distinctions else conjunctify_distinctions_dual) Pa p’
qQ’’’)))
) pa’

unfolding Qu_def by fastforce
have <Qa # {}>
using Qo_def contradiction(l) silent_reachable.refl by fastforce
hence conjunct_prices: <Vq’’’€{q’’’. 3q’€Qa. 3q’’. @’ —a a q’’ A q’’ —» q’’’}.
((if distinguishes (®a q’’’) p’ q’ 7’
then conjunctify_distinctions
else conjunctify_distinctions_dual) da p’ q’’°
) € O_conjunct (E 0o 0o 00 0 0 co 0o 00)>
using distinction_conjunctification_two_way_price [of
<{q))3. Hq,Gan qui. q) Haaq’, /\q)) _)&q})’})]
using Qo_def Pa_def by auto
have <(Conj {q’’’. 3q’€Qa. 3q’’. @’ —a a q’’> A q’’ —» q’’’}
(Aq’’’. (if distinguishes (®«a q’’’) p’ q’’’
then conjunctify_distinctions else conjunctify_distinctions_dual)
®a p’ g’’’)) € O_inner (E oo 00 00 0 0 0o 00 00)>
proof (cases <{q’’’. dJq9’€Qu. 3Iq’’. q@’ —a a q’’ A q’’ —» q’’} = {}>)
case True
then show ?7thesis
unfolding O_inner_def O_conjunct_def
by (auto simp add: True bot_enat_def)
next
case False
then show 7thesis
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using conjunct_prices
unfolding O_inner_def O_conjunct_def by force
qed
hence obs_price: <(Obs « (Internal (Conj {q’’’. 3Iq’€Qa. Jq’’.
(A\g’’’. (if distinguishes (P« q’’’) p’ q’”’
then conjunctify_distinctions else conjunctify_distinctions_dual
) Pa p’ g’’’)))) € O_inner (E 0o o0 00 0 0 00 00 00) >
using distinction_conjunctification_price distinctions_«
unfolding O_inner_def O_def by simp
from obs_dist distinctions_n have
<hml_srbb_inner_models p (BranchConj «
(Internal (Conj {q’’’. Iq’€Qe. Iq’’. @’ —a a q’’ A q’’ —» q’’’}
(Aq’?’. (if distinguishes (®a q’’’) p’ q’?’
then conjunctify_distinctions else conjunctify_distinctions_dual
) ®a p’ q’’?)))
{@°. g > @ A (JpeO (E 00 00 00 0 0 0o 00 00).
distinguishes ¢ p q’ V distinguishes ¢ q’ p)} ¥n)>
using <Qa # {}> silent_reachable.refl
unfolding hml_srbb_conj.distinguishes_def hml_srbb_inner.distinguishes_def
by (smt (verit) Quo_def empty_Collect_eq hml_srbb_inner_models.simps(1,4) mem_Collect_eq)
moreover have <Vq’. 9 — q’ — — hml_srbb_inner_models q’
(BranchConj o
(Internal (Conj {q’’’. 3q’€Qa. 3q’’. @’ —a a q’’ A q’’ —» q’’’}
(Aq’’’. (if distinguishes (Pa q’’’) p’ q’’’
then conjunctify_distinctions
else conjunctify_distinctions_dual) $a p’

q) Haaq”/\q”—»q”)}

q’’”)))
{@°. 9 > q> A (FpeO (E co oo o0 0 0 0o 0o 00).
distinguishes ¢ p q’ V distinguishes ¢ q’ p)} ¥n)>
proof safe
fix q’
assume contradiction: <q —» q’>
<hml_srbb_inner_models q’ (BranchConj «
(Internal (Conj {q’’’. 3Iq’€Qa. Iq’’. @’ —a a q’’ A q’’ —» q’’’}
(Aq’’?. (if distinguishes (®a q’’’) p’ q’’’
then conjunctify_distinctions
else conjunctify_distinctions_dual) ®a p’
q’’”)))
{@°. g » q> A (FpeO (E 0o o0 00 0 0 0o 0o 00).
distinguishes ¢ p q’ V distinguishes ¢ q’ p)} ¥Yn)>
thus <False>
using obs_dist distinctions_17 branching_conj_obs branching_conj_parts
unfolding distinguishes_def hml_srbb_conj.distinguishes_def
hml_srbb_inner.distinguishes_def Qo _def
by blast
qed
moreover have branch_price:
< (BranchConj «
(Internal (Conj {q’’’. 3Iq’€Qa. Iq’’. @’ —a a q’’ A q’’ —» q’’’}
(Aq’’’. (if distinguishes (®a q’’’) p’ q’’’
then conjunctify_distinctions
else conjunctify_distinctions_dual) ®a p’
q’’")))
{@°. g » @ A (JpeO (E o0 o0 00 0 0 0o 00 00).
distinguishes ¢ p q’ V distinguishes ¢ q’ p)} ¥n)
€ O_inner (E o0 o0 o0 0 0 oo oo 00) >
using distinctions_n obs_price
unfolding Qa_def O_inner_def O_def O_conjunct_def Pa_def
by (simp, metis (mono_tags, lifting) SUP_bot_conv(2) bot_enat_def sup_bot_left)
ultimately have <distinguishes (Internal (BranchConj «
(Internal (Conj {q’’’. 3q’€Qe. Iq’’. q’ —a o q’’ A q’’ —» q’’’}
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(Aq’?’. (if distinguishes (®a q’’’) p’ q’?°
then conjunctify_distinctions else conjunctify_distinctions_dual) P« p’
q;:z)))
{@°. g > q@ A (peO (E 0o 00 00 00 00 00 00).
distinguishes ¢ p q’ V distinguishes ¢ q’ p)} ¥n)) p q>
unfolding distinguishes_def Qu_def
using silent_reachable.refl hml_srbb_models.simps(2) by blast
moreover have < (Internal (BranchConj «
(Internal (Conj {q’’’. Iq’€Qa. Iq’’. @’ —a a q’’ A q’’ —» q’’’}
(Aq’?’. (if distinguishes (P« q’’’) p’ q’’’
then conjunctify_distinctions else conjunctify_distinctions_dual) P« p’
q;;:)))
{@°. g = q@ A (peO (E 0o 0o 00 00 00 00 00).
distinguishes ¢ p q’ V distinguishes ¢ q’ p)} ¥n))
€ O (E oo oo oo 00 0o oo 00)>
using branch_price
unfolding Qa_def O_def O_conjunct_def
by (metis (no_types, lifting) (_inner_def expr_internal_eq mem_Collect_eq)
ultimately show False using contradiction(l) equivalent_no_distinction by blast
qed
thus 7thesis
unfolding eta_simulation_def by blast

qed

theorem eta_bisim_coordinate: <(p ~n q) = (p ~ (E co o0 00 0 0 co o0 00) q)>

using modal_eta_sim_eq logic_eta_bisim_invariant sympD equivalent_no_distinction
unfolding eta_bisimulated_def expr_equiv_def distinguishes_def
by (smt (verit, best) equivalent_equiv equivpE)

5.3 p-Similarity

lemma logic_eta_sim_invariant:

assumes
<JR. eta_simulation R A R pO q0>
<p € O (E oo 00000000 00)>
<p0 [=SRBB ¢>

shows <q0 [=SRBB >

proof -

have <Ay x 9.
(Vp q. (3R. eta_simulation RA Rpaq) — ¢ € O (E 0o oo o0 0 0 co 0 0)

— p ESRBB ¢ —> q E=SRBB @) A
(Vp q. (3R. eta_simulation RA R p q) — x € O_inner (E 0o co co 0 0 co 0 0)
— hml_srbb_inner_models p x — (3q’. q — q’ A hml_srbb_inner_models q’ X)) A
(Vp q. (3R. eta_simulation R A R pq) — ¥ € O_conjunct (E co co o0 0 0 oo 0 0)
— hml_srbb_conjunct_models p ¢ — hml_srbb_conjunct_models q %) >
proof -
fix ¢ x ¢
show
<(Vp q. (3R. eta_simulation RARpq — ¢ € O (E oo co co 00 co 0 0)
— p ESRBB ¢ — q =SRBB ¢) A
(Vp q. (3R. eta_simulation R A Rp q@ — x € O_inner (E co co 00 0 0 co 0 0)
— hml_srbb_inner_models p x — (3q’. 9 — q’ A hml_srbb_inner_models q’ x)) A
(Vp q. (IR. eta_simulation R A Rp q — % € O_conjunct (E co 0o 0o 0 0 co 0 0)
— hml_srbb_conjunct_models p i) — hml_srbb_conjunct_models q ) >
proof (induct rule: hml_srbb_hml_srbb_inner_hml_srbb_conjunct.induct)
case TT
then show 7case by simp
next
case (Internmal x)
show 7case
proof safe
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fix pqR
assume case_assms:
<eta_simulation R> <R p gq> <p =SRBB hml_srbb.Internal x>
<Internal x € O (E 00 0o co 0 0 co 0 0)>
then obtain p’ where p’_spec: <p —» p’> <hml_srbb_inner_models p’ x> by auto
have <x € O_inner (E oo co 0o 0 0 co 0 0)>
using case_assms(4) unfolding O_inner_def (O_def by auto
hence <3q’. q —» q’ A hml_srbb_inner_models q’ x>
using Internal case_assms(1,2) p’_spec silence_retains_eta_sim
by (metis silent_reachable_trans)
thus <q [=SRBB hml_srbb.Internal x> by auto
gqed
next
case (ImmConj I W)
then show 7case unfolding (O_inner_def (O_def by auto
next
case (Obs a @)
then show 7case
proof (safe)
fix p q R
assume case_assms:
<eta_simulation R> <R p g~
<Obs a ¢ € O_inner (E co o0 o0 0 0 co 0 0)>
<hml_srbb_inner_models p (hml_srbb_inner.0bs « ¢)>
hence <o € O (E 00 0o 00 0 0 co 0 0)> unfolding O_inner_def (O_def by auto
hence no_imm_conj: <AI ¥. ¢ = ImmConj I ¥ A I # {}> unfolding O_def by force
have back_step: <VpO pl. pl =SRBB ¢ — pO0 —» pl — pO =SRBB >
proof (cases )
case TT
then show 7thesis by auto
next
case (Internal _)
then show 7thesis
using silent_reachable_trans by auto
next
case (ImmConj _ _)
then show ?7thesis using no_imm_conj by auto
qed
from case_assms obtain p’ where <p —a « p’> <p’ ESRBB ¢> by auto
then obtain q’ q’’ q’’’ where <q — q’> <q’ —a « q’’> <q’’ —» q’’’> <R p’ q’’’>
using <eta_simulation R> <R p q> unfolding eta_simulation_def
using silent_reachable.refl by blast
hence <q’’’ |=SRBB ¢> using <p’ |=SRBB > Obs <p € O (E 00 o0 00 0 0 o0 0 0)>
using case_assms(1l) by blast
hence <hml_srbb_inner_models q’ (hml_srbb_inner.0bs « ¢)>
using <q’ —a o q’’> <q’’ —» q’’’> back_step by auto
thus <3q’. q —» q’ A hml_srbb_inner_models q’ (hml_srbb_inner.0Obs «a ¢)>
using <q —» q’> by blast
qed
next
case (Conj I W)
show 7case
proof safe
fixpqR
assume case_assms:
<eta_simulation R> <R p qg>
<Conj I ¥ € O_inner (E 0o co co 0 0 co 0 0)>
<hml_srbb_inner_models p (Conj I V)>
hence conj_price: <Vi€I. ¥ i € O_conjunct (E co oo co 0 0 co 0 0)>
unfolding O_conjunct_def (O_inner_def
by (simp, metis SUP_bot_conv(l) le_zero_eq sup_bot_left sup_gel)
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from case_assms have <Vi€I. hml_srbb_conjunct_models p (¥ i)> by auto
hence <Vi€I. hml_srbb_conjunct_models q (¥ i)>
using Conj <eta_simulation R> <R p gq> conj_price by blast
hence <hml_srbb_inner_models q (hml_srbb_inner.Conj I W)> by simp
thus <3q’. 9 =% g’ A hml_srbb_inner_models q’ (hml_srbb_inner.Conj I W¥)>
using silent_reachable.refl by blast
qed
next
case (StableConj I W)
thus 7case unfolding O_inner_def O_def by auto
next
case (BranchConj a ¢ I W)
show 7case
proof safe
fix pqR
assume case_assms:
<eta_simulation R> <R p g>
<BranchConj o ¢ I ¥ € O_inner (E oo oo oo 0 0 co 0 0)>
<hml_srbb_inner_models p (BranchConj o ¢ I W¥)>
hence < € O (E 00 00 0o 0 0 co 0 0)> unfolding O_inner_def O_def
by (simp, metis le_zero_eq sup_gel)
hence no_imm_conj: <AI ¥. ¢ = ImmConj I ¥ A I # {}> unfolding O_def by force
have back_step: <VpO pl. pl =SRBB ¢ — p0 —» pl — pO |=SRBB ¢>
proof (cases )
case TT
then show 7thesis by auto
next
case (Internal _)
then show 7thesis
using silent_reachable_trans by auto
next
case (ImmConj _ _)
then show 7thesis using no_imm_conj by auto
qed
from case_assms have conj_price: <Vi€I. ¥ i € O_conjunct (E co oo co 0 0 co 0 0)>
unfolding O_conjunct_def (O_inner_def
by (simp, metis SUP_bot_conv(1l) bot_enat_def bot_eq_sup_iff)
from case_assms have <Vi€I. hml_srbb_conjunct_models p (V¥ i)>
<hml_srbb_inner_models p (0bs a ¢)>
using branching_conj_parts branching_conj_obs by blast+
then obtain p’ where <p +—a a p’> <p’ =SRBB > by auto
then obtain q’ q’’ q’’’ where q’_q’’_spec:
<q = q’> <q’ —a «aq’’> <q’’ —» q’’’>
<quz> <Rp; q;))>
using <eta_simulation R> <R p q> silent_reachable.refl
unfolding eta_simulation_def by blast
hence <q’’’ =SRBB ¢>
using BranchConj <p’ ESRBB p> <p € O (E 00 00 00 0 0 0o 0 0)> case_assms by auto
hence <q’’ =SRBB ¢> using back_step q’_q’’_spec by blast
hence <hml_srbb_inner_models q’ (Obs « ¢)> using q’_q’’_spec by auto
moreover have <Vi€I. hml_srbb_conjunct_models q’ (¥ i)>
using BranchConj q’_q’’_spec conj_price case_assms
<Vi€I. hml_srbb_conjunct_models p (¥ i)>
by blast
ultimately show <3q’. q — q’ A hml_srbb_inner_models q’ (BranchConj a ¢ I W¥)>
using <q — q’> by auto
qed
next
case (Pos x)
show 7case
proof safe
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fix pqR
assume case_assms:
<eta_simulation R> <R p g>
<Pos x € O_conjunct (E co 0o 00 0 0 co 0 0)>
<hml_srbb_conjunct_models p (Pos x)>
hence <x € O_inner (E co 0o o0 0 0 co 0 0)>
unfolding O_inner_def O_conjunct_def by simp
from case_assms obtain p’ where <p —» p’> <hml_srbb_inner_models p’ x> by auto
then obtain q’ where <q — q’> <hml_srbb_inner_models q’ x>
using Pos case_assms <x € O_inner (E co co o0 0 0 co 0 0)> silence_retains_eta_sim
by (smt (verit, ccfv_threshold) silent_reachable_trans)
thus <hml_srbb_conjunct_models q (Pos x)> by auto
qed
next
case (Neg x)
show 7case
proof safe
fix pqR
assume case_assms:
<eta_simulation R> <R p g>
<Neg x € O_conjunct (E co co co 0 0 co 0 0)>
<hml_srbb_conjunct_models p (Neg x)>
hence False unfolding O_conjunct_def by auto
thus <hml_srbb_conjunct_models q (Neg x)> by simp
qed
qed
qed
thus 7thesis using assms by blast
qed

lemma modal_eta_sim: <eta_simulation (preordered (O (E oo oo oo 0 0 co 0 0)))>
proof -
have <3p a p’ q. (preordered (O (E 0o 00 00 0 0 00 0 0))) pq A p+ ap’ A
(a # 7 V —(preordered (O (E co co oo 0 0 co 0 0))) p’> @ A
(ti q]) q”"q_>>q’—>q"_>aq”—>q,’%>q”’
— — preordered (O (E oo co co 0 0 co 0 0)) p q’
V — preordered (O (E co co oo 0 0 oo 0 0)) p’ q’’?)>
proof clarify
have less_obs:
<modal_depth (E oo 00 00 0 0 oo 0 0) < pos_conjuncts (E co oo co 0 0 co 0 0)>
by simp
fix pap’ q
define Qo where
Qe =4{q’. g = q@’ A Fp. pe® (E o0 00 0o 0 0 co 0 0) A distinguishes ¢ p q’)}>
assume contradiction:
<preordered (O (E oo co co 0 0 co 0 0)) pg> <p — «a p’>
<Vq7 q)) q)77'q%q) Hq’Haq” Hq’)%}q)’]
— — preordered (O (E co 00 00 0 0 o0 0 0)) p q’
V = preordered (O (E co co oo 0 0 oo 0 0)) p’ q’’?>
<a # T V - preordered (O (E oo co co 0 0 co 0 0)) p’ g>
hence distinctioms: <Vq’. q = q’ —
(FpeO (E 0o 0o 00 0 0 co 0 0). distinguishes ¢ p q’) V
(Vq73 q)}J.qi '—)aqu” _>q)7%>q)77
— (€O (E 0o 00 00 0 0 0o 0 0). distinguishes ¢ p’ q’’’))>
unfolding preordered_no_distinction
by (metis silent_reachable.cases silent_reachable.refl)
hence <Vq’’ q’’’ . Vq’€Qa.
qQ’ —a «aq’’ — q’’ —» q’’
— (F¢p€O (E 0o 00 0o 0 0 co 0 0). distinguishes ¢ p’ q’’’)>
unfolding Qo_def using silent_reachable.refl by fastforce
hence <Vq’’ q’’’. q’’ — q’’’ —
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(3q’. g » q’ A Bp. pcO (E 00 00 00 0 0 00 0 0) A distinguishes ¢ p q’)
A Qq —aaq’’)
— (€O (E co co 0o 0 0 oo 0 0). distinguishes ¢ p’ q’’’)>

unfolding Qa_def by blast

hence <Vq’’’. (3q’ q’’. 9 —» q’ A

Bp. €O (E 00 00 00 0 0 0o 0 0) A distinguishes ¢ p q’) A g’ +a «a q’’
A q’ = q’?%)

— (peO (E 0o 0o 00 0 0 co 0 0). distinguishes ¢ p’ q’’’)>

by blast
then obtain ®a where Po_def:
<vq)7J_ (Eq) q)7.q%_>q7/\

(Bp. 9O (E 00 00 00 0 0 0o 0 0) A distinguishes ¢ p q’)
ANQ —aaq’ Aqg’ —»q)
— (P q’??) € O (E 00 00 00 0 0 00 0 0) A distinguishes (P« q’’’) p’ q’’’>
by metis
hence distinctions_a: <Vq’€Qo. Vq’’ q’’’.
qQ’ —a a q’’ — q’’ —» q’’’ — distinguishes (®a q’’’) p’ q’’’>
unfolding Qu_def by blast
from distinctions obtain ®n where
Vq’. q’e{q’. g = g’ A (JpeO (E o0 0o o0 0 0 co 0 0). distinguishes ¢ p q’)}
— distinguishes (7 q’) p q’ A (P q’) € O (E co 0o 00 0 0 co 0 0)>
unfolding mem_Collect_eq by moura
then obtain Un where distinctions_7:
<Vq’e{q’. q » g9’ A (FpcO (E 0o 0o co 0 0 co 0 0). distinguishes ¢ p q’)7}.
hml_srbb_conj.distinguishes (¥n q’) p q° A (¥n q’)
€ O_conjunct (E oo co co 0 0 co 0 0)>
using less_obs distinction_conjunctification distinction_conjunctification_price
by (smt (verit, del_insts))
have <p +—a « p’> using <p — « p’> by auto
from distinction_combination_eta[OF this] distinctions_a have obs_dist:
<Vq’€Qa. hml_srbb_inner.distinguishes
(Obs « (Internal (Conj {q’’’. 3q’€Qa. Iq’’. @’ —a a q’’ A q’’ — q’’’}
(conjunctify_distinctions Pa p’)))) p q’>
unfolding Qa_def by blast
have <Qa # {}»
using Qo_def contradiction(l) silent_reachable.refl by fastforce
hence conjunct_prices: <Vq’’’€{q’’’. 3q’€Qa. 3q’’. @’ —a a q’’ A q’’ —» q’’’}.
(conjunctify_distinctions ®a p’ q’’’) € O_conjunct (E oo co co 0 0 co 0 0)>
using distinction_conjunctification_price[of
<{q’’’. 3q’€Qa. 3q’’. @’ —a a q’’ A q’’ —» q’’’}>]
using Qo_def ®a_def by auto
have <(Conj {q’’’. d9’€Qa. Iq’’. q’ —ma a q’’ A q’’ —» q’’’}
(conjunctify_distinctions ®a p’)) € O_inner (E co co co 0 0 co 0 0)>
proof (cases <{q’’’. Jq’€Qa. Iq’’. q’ —ma o q’’ A q’’ —» q’’’} = {}>)
case True
then show 7thesis
unfolding O_inner_def O_conjunct_def
by (auto simp add: True bot_enat_def)
next
case False
then show 7thesis
using conjunct_prices
unfolding O_inner_def O_conjunct_def by force
qed
hence obs_price: <(Obs a (Internal (Conj {q’’’. 3q’€Qa. 3q’’. q’ —a a q’’ A q’’ —» q’’’}
(conjunctify_distinctions ®a p’)))) € O_inner (E 0o 00 00 0 0 oo 0 0)>
using distinction_conjunctification_price distinctions_a«
unfolding O_inner_def (O_def by simp
from obs_dist distinctions_7n have
<hml_srbb_inner_models p (BranchConj «
(Internal (Conj {q’’’. 3q’€Qe. Iq’’. @’ —a @ q’’> A q’’ —» q’’’}
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(conjunctify_distinctions ®a p’)))
{@°. g > 9> A (3peO (E 0o 00 00 0 0 oo 0 0). distinguishes ¢ p q’)} ¥n)>
using contradiction(1l) silent_reachable.refl
unfolding Qa_def by force
moreover have <Vq’. q — q’ — — hml_srbb_inner_models q’
(BranchConj «
(Internal (Conj {q’’’. 3q9’€Qe. Iq’’. @’ —a o q’’ A q’’ —» q’’’}
(conjunctify_distinctions ®a p’)))
{@°. 9 » q> A (3peO (E co oo o0 0 0 oo 0 0). distinguishes ¢ p q’)} ¥n)>
proof safe
fix q’
assume contradiction: <q —» q’>
<hml_srbb_inner_models q’ (BranchConj «
(Internal (Conj {q’’’. 3q9’€Qa. 3q’’. @’ —a a q@’’ A q’’ —» q’’’}
(conjunctify_distinctions ®a p’)))
{@°. g > @ A (JpeO (E o0 o0 00 0 0 co 0 0). distinguishes ¢ p q’)} ¥n)>
thus <False>
using obs_dist distinctions_n
unfolding distinguishes_def hml_srbb_conj.distinguishes_def
hml_srbb_inner.distinguishes_def Qo_def
by (auto) blast+
qed
moreover have branch_price: < (BranchConj «
(Internal (Conj {q’’’. Iq’€Qa. Iq’’. @’ —a a q’’ A q’’ —» q’’’}
(conjunctify_distinctions ®a p’)))
{@°. g = @ A (HpeO (E 0o co 00 0 0 oo 0 0). distinguishes ¢ p q’)} ¥n)
€ O_inner (E o0 00 co 0 0 co 0 0)>
using distinctions_n obs_price
unfolding Qo_def O_inner_def O_def O_conjunct_def Pa_def
by (simp, metis (mono_tags, lifting) SUP_bot_conv(2) bot_enat_def sup_bot_left)
ultimately have <distinguishes (Internal (BranchConj «
(Internal (Conj {q’’’. 3q’€Qa. 3q’’. @’ —a a q’’ A qQ’’ —» q’’’}
(conjunctify_distinctions Pa p’)))
{@9. g > @ A (HpeO (E o0 0 o0 0 0 oo 0 0). distinguishes ¢ p q°)} ¥n)) p q>
unfolding distinguishes_def Qu_def
using silent_reachable.refl hml_srbb_models.simps(2) by blast
moreover have < (Internal (BranchConj «
(Internal (Conj {q’’’. 3q’€Qa. Iq’’. @’ —a a q’’ A qQ’’ —» q’’’}
(conjunctify_distinctions Pa p’)))
{9’. 9 > q@> A (HpeO (E co 0o 0o 0 0 co 0 0). distinguishes ¢ p q’)} ¥n))
€ O (E oo o000 0000 00)>
using branch_price
unfolding Qa_def O_def O_conjunct_def
by (metis (no_types, lifting) O_inner_def expr_internal_eq mem_Collect_eq)
ultimately show False using contradiction(l) preordered_no_distinction by blast
qed
thus 7thesis
unfolding eta_simulation_def by blast
qed

theorem eta_sim_coordinate:
<(p 2 (Eocooo 0000 00) q = (JR. eta_simulation R AR p q)>
using modal_eta_sim logic_eta_sim_invariant unfolding expr_preord_def
by auto

end

end
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6 Branching Bisimilarity

theory Branching Bisimilarity
imports Eta_Bisimilarity
begin

The whole of the modal logic of hml_srbb precisely characterizes stability-respecting branching
bisimilarity.

6.1 Definitions of (Stability-Respecting) Branching Bisimilarity

context lts_tau
begin

definition branching_simulation :: <(’s = ’s = bool) = bool> where
<branching_simulation R = Vp a p> q. Rpq — p — a p’ —
((a=7TARP @ V (g’ q@’.q>»q ANq@ —waq’” ARpqg ARDP q”))>

lemma branching_simulation_intro:
assumes
<Apap q.Rpq=p—ap =
((a=7ARP @ V (3q’ q’’.q > Aq’ —aq’’ ARpqg ARpP’ q’?))>
shows
<branching_simulation R>
using assms unfolding branching_simulation_def by simp

definition branching_simulated :: <’s = ’s = bool> where
<branching_simulated p q = JR. branching_simulation R A R p q>

definition branching_bisimulated :: <’s = ’s = bool> where
<branching_bisimulated p q = JR. branching_simulation R A symp R A R p q>

definition sr_branching_bisimulated :: <’s = ’s = bool> (infix <~SRBB> 40) where
<p ~SRBB q = JR. branching_simulation R A symp R A stability_respecting R A R p g>

6.2 Properties of Branching Bisimulation Equivalences

lemma branching_bisimilarity_branching_sim: <branching_simulation (~SRBB) >
unfolding sr_branching_bisimulated_def branching_simulation_def by blast

lemma branching_sim_eta_sim:
assumes <branching simulation R>
shows <eta_simulation R>
using assms silent_reachable.refl
unfolding branching_simulation_def eta_simulation_def by blast

lemma silence_retains_branching_sim:
assumes
<branching_simulation R>
<qu>
<p —» p’>
shows <3q’. Rp’ @” A q = q’>
using assms silence_retains_eta_sim branching_sim_eta_sim by blast

lemma branching bisimilarity_stability: <stability_respecting (~SRBB)>
unfolding sr_branching bisimulated_def stability_respecting_def by blast

lemma sr_branching_bisimulation_silently_retained:
assumes
<p ~SRBB q»
<p —>» p’>
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shows
<dq’. 9 = q’ A p’ ~SRBB q’> using assms(2,1)
using branching_bisimilarity_branching_sim silence_retains_branching_sim by blast

lemma sr_branching_bisimulation_sim:

assumes
<p ~SRBB q>
<p —» p’> <p’ —a «ap’’
shows
<3q’ @’’. 9 »+ q’ AN q’ —a o q’’ A p’ ~SRBB q’ A p’’ ~SRBB q’’>
proof -

obtain q’ where <q — q’> <sr_branching_bisimulated p’ q’>
using assms sr_branching_bisimulation_silently_retained by blast
thus 7thesis
using assms(3) branching bisimilarity_branching_sim silent_reachable_trans
unfolding branching_simulation_def
by blast
qed

lemma sr_branching_bisimulated_sym:
assumes
<p ~SRBB q>
shows
<q ~SRBB p~
using assms unfolding sr_branching_bisimulated_def by (meson sympD)

lemma sr_branching_bisimulated_symp:
shows <symp (~SRBB)>
using sr_branching_bisimulated_sym
using sympl by blast

lemma sr_branching_bisimulated_reflp:
shows <reflp (~SRBB)>
unfolding sr_branching_bisimulated_def stability_respecting_def reflp_def
using silence_retains_branching_sim silent_reachable.refl
by (smt (verit) DEADID.rel_symp branching_simulation_intro)

lemma establish_sr_branching_bisim:

assumes
<Vap’. p+— ap’ —
(=7 AN p’> ~SRBB q) V (3q’ q’’. q » q’ A q’ — a q’’ A p ~SRBB g’ A p’ ~SRBB q’’))>
<Va q’. g— aq —
(=7 AN p ~SRBB q’) V (Ip’ p’’. p —» p> A p’> — ap’’ Ap’ ~SRBB g A p’’ ~SRBB q’))>
<stable_state p — (3q’. q —» q’ A p ~SRBB q’ A stable_state q’)>
<stable_state q — (dp’. p —» p’ A p’ ~SRBB q A stable_state p’)>

shows <p ~SRBB q>

proof -

define R where <R = App qq. pp ~SRBB qq V (pp =p A gqa =q) V (pp =q A qq = p)>

hence
R_cases: </\pp qq. R pp q@ = pp ~SRBB qq V (pp = p A qqa =q) V (pp = q A qq = p)> and
bisim_extension: <Vpp qq. pp ~SRBB qq —> R pp qq> by blast+

have <symp R>
unfolding symp_def R_def sr_branching_bisimulated_def
by blast

moreover have <stability_respecting R>
unfolding stability_respecting_def

proof safe
fix pp qq
assume <R pp qq> <stable_state pp~>
then consider <pp ~SRBB qq> | <pp =p A aq =q> | <pp =q A qq = p>

using R_cases by blast
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thus <3q’. q@ = q’ A R pp q’° A stable_state q’>
proof cases
case 1
then show 7thesis
using branching_bisimilarity_stability <stable_state pp> bisim_extension
unfolding stability_respecting_def
by blast
next
case 2
then show 7thesis
using assms(3) <stable_state pp> unfolding R_def by blast
next
case 3
then show 7thesis
using assms(4) <stable_state pp> <symp R> unfolding R_def
by (meson sr_branching_bisimulated_sym)
qed
qed
moreover have <branching_simulation R> unfolding branching_simulation_def
proof clarify
fix pp a p’ qq
assume bc:
<R pp 99> <pp — a p’’
<$q’ q’’. qqa » @’ A @’ = aq’ ARppq ARPp’ q’>
then consider <pp ~SRBB qq> | <pp = p A qqa=q9> | <pp =49 A qq = p>
using R_cases by blast
thus <a =7 A R p’ qq>
proof cases
case 1
then show 7thesis
by (smt (verit, del_insts) bc bisim_extension
branching_bisimilarity_branching_sim branching_simulation_def)
next
case 2
then show 7thesis
using bc assms(1) bisim_extension by blast
next
case 3
then show 7thesis
using bc assms(2) bisim_extension sr_branching bisimulated_sym by metis
qed
qed
moreover have <R p q> unfolding R_def by blast
ultimately show 7thesis
unfolding sr_branching_bisimulated_def by blast
qed

lemma sr_branching_bisimulation_stuttering:
assumes
<pp # [1>
<Vi < length pp - 1. pp!i — 7 pp!(Suc i)>
<hd pp ~SRBB last pp~>
<i < length pp~>
shows
<hd pp ~SRBB pp!i>
proof -
have chain_reachable: <Vj < length pp. Vi < j. pp!i — pp!j>
using tau_chain_reachabilty assms(2)
hence chain_hd_last:
<Vi < length pp. hd pp —» pp!i>
<Vi < length pp. pp!i —» last pp>
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by (auto simp add: assms(1) hd_conv_nth last_conv_nth)
define R where
<R =M q. (p=hd pp A (3i < length pp. pp!i = q))
V ((q = hd pp A (3i < length pp. pp'i = p))) V p ~SRBB g»
have later_hd_sim: <Ai p’ a. i < length pp =— pp!i — «a p’
= (hd pp) —» (pp!'i) A (pp'i) — a p’ A R (pp!'i) (pp!i) AR P’ p’>
using chain_hd_last sr_branching_bisimulated_reflp
unfolding R_def
by (simp add: reflp_def)
have hd_later_sim: <Ai p’ a. i < length pp - 1 = (hd pp) — « p’
= (3q’ q’’. (pp!'i) —» q@> A q@’ —w aq’’ AR (hd pp) 9° AR P’ q’’)>
proof -
fix 1 p’ «
assume case_assm: <i < length pp - 1> <(hd pp) — « p’>
hence <(a = 7 A p’ ~SRBB (last pp))
VvV (3q’ q’’. (last pp) —» q’ A @’ — o q’’ A (hd pp) ~SRBB q’ A p’ ~SRBB q’’)>
using assms branching bisimilarity_branching sim branching_simulation_def
by auto
thus <(3q’ q’’. (pp!'i) - q@> A q’ — a q’> AR (hd pp) 9> A R p’ q’’)>
proof
assume tau_null_step: <a = 7 A p’ ~SRBB last pp>
have <pp ! i —» (pp!(length pp - 2))>
using case_assm(1l) chain_reachable by force
moreover have <pp!(length pp - 2) — a (last pp)>
using assms(1,2) case_assm(1l) last_conv_nth tau_null_step
by (metis Nat.lessE Suc_1 Suc_diff_Suc less_Suc_eq zero_less_Suc zero_less_diff)
moreover have <R (hd pp) (pp!(length pp - 2)) A R p’ (last pp)>
unfolding R_def
by (metis assms(1) diff_less length_greater_0_conv less_2_cases_iff tau_null_step)
ultimately show <3q’ q’’. pp ! i = q’ A q’ — a q’> AR (hd pp) 9> AR P’ q’’>
by blast
next
assume <3q’ q’’. last pp - q’ A q’ — a q’’ A hd pp ~SRBB q’ A p’ ~SRBB q’’>
hence <dq’ q’’. last pp = 9@’ A q@° — a q@’> AR (hd pp) 9° AR P’ q’’>
unfolding R_def by blast
moreover have <i < length pp> using case_assm by auto
ultimately show <dq’ q’’. pp ! i1 —+» q’ A q’ — aq’> AR (hd pp) 9> AR p’ q’’>
using chain_hd_last silent_reachable_trans by blast
qed
qed
have <branching_simulation R>
proof (rule branching simulation_intro)
fix pap’ q
assume challenge: <R p q> <p — « p’>
from this(1) consider
<(p =hd pp A (i < length pp. pp'i = q))> |
<(q = hd pp A (3i < length pp. pp'i = p))> |
< p ~SRBB g> unfolding R_def by blast
thus <o =7 ARpPp’>qV (39> @°’. ¢ »q AqQ — aq’”’ ANRpqa ARp q )
proof cases

case 1
then obtain i where i_spec: <i < length pp> <pp ! i = gq> by blast
from 1 have <p = hd pp>
show 7thesis
proof (cases <i = length pp - 1>)
case True
then have <q = last pp> using i_spec assms(1)
by (simp add: last_conv_nth)
then show 7thesis using challenge(2) assms(3) branching_bisimilarity_branching_sim
unfolding R_def branching_simulation_def <p = hd pp>
by metis
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next
case False
hence <i < length pp - 1> using i_spec by auto
then show 7thesis using <p = hd pp> i_spec hd_later_sim challenge(2) by blast
qed
next
case 2
then show 7thesis
using later_hd_sim challenge(2) by blast
next
case 3
then show 7thesis
using challenge(2) branching bisimilarity_branching_sim
unfolding branching_simulation_def R_def by metis
qed
qed
moreover have <symp R>
using sr_branching_bisimulated_sym
unfolding R_def sr_branching_bisimulated_def
by (smt (verit, best) sympI)
moreover have <stability_respecting R>
using assms(3) stable_state_stable sr_branching_bisimulated_sym
branching_bisimilarity_stability
unfolding R_def stability_respecting_def
by (metis chain_hd_last)
moreover have <Ai. i < length pp = R (hd pp) (pp!i)> unfolding R_def by auto
ultimately show 7thesis
using assms(4) sr_branching_bisimulated_def by blast
qed

lemma sr_branching_bisimulation_stabilizes:
assumes
<sr_branching_bisimulated p gq>
<stable_state p~>
shows
<3q’. 9 —» q’ A sr_branching_bisimulated p q’ A stable_state q’>
proof -
from assms obtain R where
R_spec: <branching_simulation R> <symp R> <stability_respecting R> <R p g~
unfolding sr_branching_bisimulated_def by blast
then obtain q’ where <q —» q’> <stable_state q’>
using assms(2) unfolding stability_respecting_def by blast
moreover have <sr_branching_bisimulated p q’>
using sr_branching_bisimulation_stuttering
assms (1) calculation(l) sr_branching bisimulated_def sympD
by (metis assms(2) sr_branching bisimulation_silently_retained stable_state_stable)
ultimately show 7thesis by blast
qed

lemma sr_branching_bisim_stronger:
assumes
<sr_branching_bisimulated p g>
shows
<branching_bisimulated p q>
using assms unfolding sr_branching_bisimulated_def branching_bisimulated_def by auto

6.3 1mml_srbb as Modal Characterization of Stability-Respecting Branching
Bisimilarity

lemma modal_sym: <symp (preordered UNIV)>

proof -
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have <3 p q. preordered UNIV p g A —preordered UNIV q p>
proof safe
fix p q
assume contradiction:
<preordered UNIV p q>
<—preordered UNIV q p~>
then obtain ¢ where ¢_distinguishes: <distinguishes ¢ q p> by auto

thus False
proof (cases )

case TT

then show 7thesis using (p_distinguishes by auto
next

case (Internmal x)

hence <distinguishes (ImmConj {undefined} (Ai. Neg X)) p q’>
using (_distinguishes by simp

then show 7thesis using contradiction preordered_no_distinction by blast

next

case (ImmConj I W)

then obtain i where i_def: <i € I> <hml_srbb_conj.distinguishes (¥ i) q p>
using (_distinguishes srbb_dist_imm_conjunction_implies_dist_conjunct by auto

then show 7thesis

proof (cases <W¥ i>)
case (Pos x)
hence <distinguishes (ImmConj {undefined} (Ai. Neg X)) p q> using i_def by simp
thus 7thesis using contradiction preordered_no_distinction by blast

next

case (Neg x)
hence <distinguishes (Internal X) p q> using i_def by simp
thus 7thesis using contradiction preordered_no_distinction by blast
qed
qed
qed
thus 7thesis unfolding symp_def by blast
qed

lemma modal_branching_sim: <branching_simulation (preordered UNIV) >
proof -
have <fp a p’ q. (preordered UNIV) p g A p + a p’ A
(a0 # 7 V —(preordered UNIV) p’ q) A
~Vq’ q’. g »q — q — aq’’
— — preordered UNIV p q’ V — preordered UNIV p’ q’’)>
proof clarify
fix pap’ q
define Qo where <Qa = {q’. q —» q’ A (. distinguishes ¢ p q’)}>
assume contradiction:
<preordered UNIV p q> <p — « p’”>
<Vq7 q)7' q%ql Hq) Haq)]
— — preordered UNIV p g’ V — preordered UNIV p’ q’’>
<a # T V - preordered UNIV p’ q>
hence distinctions: <Vq’. q — q’° —
(d¢. distinguishes ¢ p q’) V
(Vq’’. q’ —a a q’° — (d¢. distinguishes ¢ p’ q’’))>
using preordered_no_distinction
by (metis equivpl equivp_def lts_semantics.preordered_preord modal_sym)
hence <Vq’’. Vq’€Qa.
qQ’ —a o q’’ — (Jp. distinguishes ¢ p’ q’’)>
unfolding Qu_def by auto
hence <Vq’’. (3q’. q = q’ A ($p. distinguishes ¢ p q’°) A q’ —a a q’°)
— (J¢. distinguishes ¢ p’ q’’)>
unfolding Qu_def by blast
then obtain Pa where
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(3q’. 9 —» q° A (Jp. distinguishes ¢ p q°) A q’ +a a q’’)

<Vq3 ),
— distinguishes (Pa q’’) p’ q’’> by metis

hence distinctions_a: <Vq’€Qu. Vq’’.
q’ —a «a q’’ — distinguishes (®a q’’) p’ q’’>
unfolding Qa_def by blast
from distinctions obtain ®n where
<Vq’. q’€{q’. @ = q’ A (J¢. distinguishes ¢ p q’)}
— distinguishes (®7 q’) p q’> unfolding mem_Collect_eq by moura
with distinction_conjunctification obtain W7 where distinctions_n:
<Vq’e{q’. 9 - q’ A (Jp. distinguishes ¢ p q’)}.
hml_srbb_conj.distinguishes (¥n q’) p q’>
by blast
have <p —a « p’> using <p — « p’> by auto
from distinction_combination[0OF this] distinctions_a have obs_dist:
<Vq’€Qa.
hml_srbb_inner.distinguishes (Obs o (ImmConj {q’’. Iq’’’€Qe. q’’’ —a «a q’’}
(conjunctify_distinctions ®a p’))) p q’>

unfolding Qu_def by blast

with distinctions_n have

<hml_srbb_inner_models p (BranchConj «

(ImmConj {q’’. 3q’’’€Qa. q’’’ +—a o q’’}

(conjunctify_distinctions P« p’))

{q9’. 9 = q> A (p. distinguishes ¢ p q’)} Un)>
using contradiction(1l) silent_reachable.refl
unfolding Qa_def distinguishes_def hml_srbb_conj.distinguishes_def

hml_srbb_inner.distinguishes_def preordered_def
by simp force
moreover have <Vq’. q — q’ — — hml_srbb_inner_models q’
(BranchConj o (ImmConj {q’’. 3q’’’€Qa. q’’’ +—a o q’’}
(conjunctify_distinctions ®a p’)) {q’. 9 = q’ A (. distinguishes ¢ p q’)} ¥n)>

proof safe
fix q’
assume contradiction: <q —» q’>
. dq9’’’€Qa. q’’’ —a a q’’}

<hml_srbb_inner_models q’ (BranchConj a (ImmConj {q’’
(conjunctify_distinctions ®a p’)) {q’. 9 —» q’ A (F¢. distinguishes ¢ p q’)} Un)>

thus <False>
using obs_dist distinctiomns_n
unfolding distinguishes_def hml_srbb_conj.distinguishes_def

hml_srbb_inner.distinguishes_def Qo_def
by (auto) blast+

qed
ultimately have <distinguishes (Internal (BranchConj «
Jdq’’’€Qa. q’’’ —a a q’’} (conjunctify_distinctions Pa p’))

(ImmConj {q’’.
{q9’. 9 - q> A (3p. distinguishes ¢ p q’)} ¥Un)) p q>

unfolding distinguishes_def Qo_def
using silent_reachable.refl by (auto) blast+
thus False using contradiction(l) preordered_no_distinction by blast

qed

thus 7thesis
unfolding branching_simulation_def by blast

qed

lemma logic_sr_branching bisim_invariant

assumes
<sr_branching_bisimulated pO q0~>

<p0 |=SRBB >
shows <q0 [=SRBB >
proof -
have <Ay x ¥.
(Vp q. sr_branching_bisimulated p g — p FSRBB ¢ — q =SRBB ¢) A
(Vp q. sr_branching_bisimulated p q — hml_srbb_inner_models p X
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— (3q’. 9 = @’ A hml_srbb_inner_models q’ x)) A
(Vp q. sr_branching_bisimulated p q —> hml_srbb_conjunct_models p ¥
— hml_srbb_conjunct_models q %) >
proof -
fix ¢ x ¢
show
<(Vp q. sr_branching_bisimulated p ¢ — p E=SRBB ¢ — q SRBB ¢) A
(Vp q. sr_branching_bisimulated p q —> hml_srbb_inner_models p x
— (3q’. 9 = @’ A hml_srbb_inner_models q’ x)) A
(Vp q. sr_branching_bisimulated p q —> hml_srbb_conjunct_models p
— hml_srbb_conjunct_models q %) >
proof (induct rule: hml_srbb_hml_srbb_inner_hml_srbb_conjunct.induct)
case TT
then show 7case by simp
next
case (Internal x)
show 7case
proof safe
fixpq
assume <sr_branching bisimulated p q> <p [=SRBB hml_srbb.Internal x>
then obtain p’ where <p — p’> <hml_srbb_inner_models p’ x> by auto
hence <dq’. q — q’ A hml_srbb_inner_models q’ x>
using Internal <hml_srbb_inner_models p’ x>
by (meson lts_tau.silent_reachable_trans <p ~SRBB g>
sr_branching_bisimulation_silently_retained)
thus <q [=SRBB hml_srbb.Internal x> by auto
gqed
next
case (ImmConj I W)
then show ?case by auto
next
case (Obs a @)
then show 7case
proof (safe)
fixpgq
assume
<sr_branching_bisimulated p q>
<hml_srbb_inner_models p (hml_srbb_inner.0Obs a ¢)>
then obtain p’ where <p —a « p’> <p’ E=SRBB ¢> by auto
then obtain q’ q’’ where <q — q’> <q’ +—a « q’’> <sr_branching_ bisimulated p’ q’’>
using sr_branching_bisimulation_sim[0OF <sr_branching_ bisimulated p g>]
silent_reachable.refl
by blast
hence <q’’ |=SRBB ¢> using <p’ =SRBB ¢> Obs by blast
hence <hml_srbb_inner_models q’ (hml_srbb_inner.0bs « ¢)>
using <q’ —a o q’’> by auto
thus <3q’. q —» q’ A hml_srbb_inner_models q’ (hml_srbb_inner.0Obs «a ¢)>
using <q —» q’> by blast
qed
next
case (Conj I W)
show 7case
proof safe
fix pq
assume
<sr_branching_bisimulated p q>
<hml_srbb_inner_models p (hml_srbb_inner.Conj I V¥)>
hence <Vi€I. hml_srbb_conjunct_models p (¥ i)> by auto
hence <Vi€I. hml_srbb_conjunct_models q (¥ 1i)>
using Conj <sr_branching bisimulated p q> by blast
hence <hml_srbb_inner_models q (hml_srbb_inner.Conj I W¥)> by simp
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thus <3q’. 9 — q’ A hml_srbb_inner_models q’ (hml_srbb_inner.Conj I W)>
using silent_reachable.refl by blast
qed
next
case (StableConj I W) show ?case
proof safe
fix pq
assume
<sr_branching_bisimulated p q~>
<hml_srbb_inner_models p (StableConj I ¥)>
hence <Vi€I. hml_srbb_conjunct_models p (¥ i)>
using stable_conj_parts by blast
from <hml_srbb_inner_models p (StableConj I W)> have <stable_state p> by auto
then obtain q’ where <q — q’> <stable_state q’> <sr_branching_bisimulated p q’>
using <sr_branching bisimulated p q> sr_branching_bisimulation_stabilizes by blast
hence <Vi€I. hml_srbb_conjunct_models q’ (¥ i)>
using <Vi€I. hml_srbb_conjunct_models p (¥ i)> StableConj by blast
hence <hml_srbb_inner_models q’ (StableConj I W)> using <stable_state q’> by simp
thus <3q’. 9 — q’ A hml_srbb_inner_models q’ (StableConj I W¥)>
using <q — q’> by blast
qed
next
case (BranchConj a ¢ I V)
show 7case
proof safe
fix pq
assume
<sr_branching_bisimulated p q>
<hml_srbb_inner_models p (BranchConj a ¢ I W¥)>
hence <Vi€I. hml_srbb_conjunct_models p (V¥ 1i)>
<hml_srbb_inner_models p (Obs a ¢)>
using branching_conj_parts branching conj_obs by blast+
then obtain p’ where <p —a « p’> <p’ ESRBB ¢> by auto
then obtain q’ q’’ where q’_q’’_spec:
<q —+» q’> <q’ —ma a q’’>
<sr_branching_bisimulated p q’> <sr_branching bisimulated p’ q’’~>
using sr_branching bisimulation_sim[0F <sr_branching_bisimulated p g>]
silent_reachable.refl[of p]
by blast
hence <q’’ =SRBB ¢> using BranchConj.hyps <p’ =SRBB ¢> by auto
hence <hml_srbb_inner_models q’ (Obs « ¢)> using q’_q’’_spec by auto
moreover have <Vi€I. hml_srbb_conjunct_models q’ (¥ 1i)>
using BranchConj.hyps <Vi€I. hml_srbb_conjunct_models p (¥ i)> q’_q’’_spec by blast
ultimately show <3q’. q — q’ A hml_srbb_inner_models q’ (BranchConj o ¢ I W¥)>
using <q —» q’> by auto
qed
next
case (Pos x)
show 7case
proof safe
fix pq
assume
<sr_branching_bisimulated p q->
<hml_srbb_conjunct_models p (Pos yx)>
then obtain p’ where <p —» p’> <hml_srbb_inner_models p’ x> by auto
then obtain q’ where <q — q’> <hml_srbb_inner_models q’ x>
using Pos <p ~SRBB q> sr_branching_bisimulation_silently_retained
by (meson silent_reachable_trans)
thus <hml_srbb_conjunct_models q (Pos x)> by auto
qed
next
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case (Neg x)
show 7case
proof safe
fix pq
assume
<sr_branching_bisimulated p q~>
<hml_srbb_conjunct_models p (Neg x)>
hence <Vp’. p —» p’ — —hml_srbb_inner_models p’ x> by simp
moreover have
<(3q’. 9 =+ q’ A hml_srbb_inner_models q’ x)
— (dp’. p = p’ A hml_srbb_inner_models p’ x)>
using Neg sr_branching_bisimulated_sym[OF <sr_branching bisimulated p q>]
sr_branching_bisimulation_silently_retained
by (meson silent_reachable_trans)
ultimately have <Vq’. q — q’ — —hml_srbb_inner_models q’ x> by blast
thus <hml_srbb_conjunct_models q (Neg x)> by simp
qed
qed
qed
thus 7thesis using assms by blast
qed

lemma sr_branching_bisim_is_hmlsrbb: <sr_branching_bisimulated p q = preordered UNIV p g>
using modal_stability_respecting modal_sym modal_branching_sim
logic_sr_branching_bisim_invariant (O_sup preordered_def
unfolding sr_branching_bisimulated_def by metis

lemma sr_branching_bisimulated_transitive:
assumes
<p ~SRBB g~
<q ~SRBB r>
shows
<p ~SRBB r~>
using assms unfolding sr_branching_bisim_is_hmlsrbb by simp

lemma sr_branching_bisimulated_equivalence: <equivp (~SRBB)>
proof (rule equivpIl)
show <symp (~SRBB)> using sr_branching_bisimulated_symp .
show <reflp (~SRBB)> using sr_branching bisimulated_reflp .
show <transp (~SRBB)>
unfolding transp_def using sr_branching_bisimulated_transitive by blast
qed

lemma sr_branching_bisimulation_stuttering_all:

assumes
<pp 7 [1>
<Vi < length pp - 1. pp!i — 7 pp!(Suc i)>
<hd pp ~SRBB last pp>
<i < j> <j < length pp>

shows
<pp'i ~SRBB pp!j~>

using assms equivp_def sr_branching_bisimulated_equivalence equivp_def order_le_less_trans
sr_branching_bisimulation_stuttering

by metis

theorem sr_branching_bisim_coordinate: <(p ~SRBB q) = (p =X (E 00 00 00 00 00 00 00 00) q) >
using sr_branching bisim_is_hmlsrbb O_sup

unfolding expr_preord_def by auto

end
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7 Energy Games

theory Energy_Games
imports Main
begin

Energy games are the foundation for the weak spectroscopy game. We introduce them through a
recursive definition of attacker’s winning budgets in energy reachability games.

7.1 Fundamentals

type_synonym ’energy update = <’energy — ’energy option>

An energy game is played by two players on a directed graph labeled by energy updates. These
updates represent the costs of choosing a certain move, in our case, for the attacker.

locale energy_game =

fixes
weight_opt :: <’gstate = ’gstate = ’energy update option> and
defender :: <’gstate = bool> and
ord:: <’energy — ’energy = bool>

assumes

antisim: </\e e’. (ord e e’) = (ord e’ e) =—> e = e’> and
monotonicity: </\g g’ e e’ eu eu’.
weight_opt g g’ # None — the (weight_opt g g’) e = Some eu
—> the (weight_opt g g’) e’ = Some eu’ =—> ord e e’ = ord eu eu’> and
defender_win_min: <Ag g’ e e’. ord e e’ — weight_opt g g’ # None
—> the (weight_opt g g’) e’ = None — the (weight_opt g g’) e = None>
begin

abbreviation attacker :: <’gstate = bool> where
<attacker p = — defender p>

abbreviation moves :: <’gstate = ’gstate = bool> (infix <»—> 70) where
<gl — g2 = weight_opt gl g2 # None>

abbreviation weighted_move
<’gstate = ’energy update = ’gstate = bool> (<_ »—wgt _ _> [60,60,60] 70) where
<weighted_move gl u g2 = gl — g2 A (the (weight_opt gl g2) = u)>

abbreviation <weight gl g2 = the (weight_opt gl g2)>

abbreviation <updated g g’ e = the (weight g g’ e)>

7.2 Winning Budgets

The attacker wins a game if and only if they manage to force the defender to get stuck before
running out of energy.

inductive attacker_wins:: <’energy — ’gstate — bool> where
Attack: <attacker_wins e g> if
<attacker g> <g — g’> <weight g g’ e = Some e’> <attacker_wins e’ g’> |
Defense: <attacker_wins e g> if
<defender g> <Vg’. (g — g’) — (de’. weight g g’ e = Some e’ A attacker_wins e’ g’)>

lemma attacker_wins_Ga_with_id_step:
assumes <attacker_wins e g’> <g »—wgt Some g’> <attacker g>
shows <attacker_wins e g>
using assms by (metis attacker_wins.simps)

If from a certain starting position g a game is won by the attacker with some energy e (i.e. e is in
the winning budget of g), then the game is also won by the attacker with more energy.
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lemma win_a_upwards_closure:
assumes
<attacker_wins e g>
<ord e e’>
shows
<attacker_wins e’ g>
using assms proof (induct arbitrary: e’ rule: attacker_wins.induct)
case (Attack g g’ e eu e’)
with defender_win_min obtain eu’ where <weight g g’ e’ = Some eu’> by fastforce
then show 7case
using Attack monotonicity attacker_wins.simps by blast
next
case (Defense g e)
with defender_win_min have <Vg’. g — g’ — (Jeu’. weight g g’ e’ = Some eu’)> by fastforce
then show 7case
using Defense attacker_wins.Defense monotonicity by meson
qed

end — context energy_game

end
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8 Weak Spectroscopy Game

theory Spectroscopy_Game
imports Energy_Games Energy Labeled_Transition_Systems
begin

The weak spectroscopy game is an energy game played over an LTS. The attacker’s moves in the
weak spectroscopy game depend on the transitions of the processes and the available energy. Intu-
itively, each move type corresponds to a production in the construction of distinguishing formulas;
and each attacker position to a non-terminal in the underlying grammar.

8.1 Game Rules

datatype (’s, ’a) spectroscopy_position =
Attacker_Immediate (attacker_state: <’s>) (defender_states: <’s set>) |
Attacker_Delayed (attacker_state: <’s>) (defender_states: <’s set>) |
Attacker_Conjunct (attacker_state: <’s>) (defender_state: <’s>) |
Attacker_Branch (attacker_state: <’s>) (defender_states: <’s set>) |

Defender_Conj (attacker_state: <’s>) (defender_states: <’s set>) |

Defender_Stable_Conj (attacker_state: <’s>) (defender_states: <’s set>) |

Defender_Branch (attacker_state: <’s>) (attack_action: <’a>)
(attacker_state_succ: <’s>) (defender_states: <’s set>)
(defender_branch_states: <’s set>)

context lts_tau
begin

The names of moves of the weak spectroscopy game indicate the respective HML constructs they
correspond to.

fun spectroscopy_moves :: <(’s, ’a) spectroscopy_position = (’s, ’a) spectroscopy_position
= energy update option>
where
delay:
<spectroscopy_moves (Attacker_Immediate p Q) (Attacker_Delayed p’ Q’)
= (if p> = p A Q —»S Q’ then id_up else None)> |

procrastination:
<spectroscopy_moves (Attacker_Delayed p Q) (Attacker_Delayed p’ Q’)
= (1if (> =QAp#p’” Ap+— 7 p’) then id_up else None)> |

observation:
<spectroscopy_moves (Attacker_Delayed p Q) (Attacker_Immediate p’ Q’)
= (if (da. p—a ap’ A Q —aS a Q’) then (subtract 1 0 0 0 0 0 0 0)
else None)> |

f_or_early_conj:
<spectroscopy_moves (Attacker_Immediate p Q) (Defender_Conj p’ Q’)
=(if (Q#A{} AN Q=Q A p =p’) then (subtract 0 0 00 10 0 0)
else None)> |

late_inst_conj:
<spectroscopy_moves (Attacker_Delayed p Q) (Defender_Conj p’ Q’)
= (if p=p’ A Q = Q° then id_up else None)> |
conj_answer:
<spectroscopy_moves (Defender_Conj p Q) (Attacker_Conjunct p’ q)
= (if p=p’ A q € Q then (subtract 0 0 1 0 0 0 0 0) else None)> |

pos_neg_clause:
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<spectroscopy_moves (Attacker_Conjunct p q) (Attacker_Delayed p’ Q’)
= (if (p = p’) then
(if {q} —»S Q’ then Some minl_6 else None)
else (if {p} —S Q’ A q=p’
then Some (MAe. Option.bind (subtract_fn 0 0 0 0 0 0 0 1 e) minl_7)
else None))> |

late_stbl_conj:
<spectroscopy_moves (Attacker_Delayed p Q) (Defender_Stable_Conj p’ Q’)
=@t (p=p AQ ={q€Q. F. a=7a) A @p.pr—=7p"))
then id_up else Nomne)> |

conj_s_answer:
<spectroscopy_moves (Defender_Stable_Conj p Q) (Attacker_Conjunct p’ q)
= (if p=p’ AN q € Q then (subtract 00 0 1 0 0 0 0)
else None)> |

empty_stbl_conj_answer:
<spectroscopy_moves (Defender_Stable_Conj p Q) (Defender_Conj p’ Q’)
=({1f Q={AQ=Q A p=p’ then (subtract 00 0 100 0 0)
else None)> |

br_conj:
<spectroscopy_moves (Attacker_Delayed p Q) (Defender_Branch p’ « p’’ Q’ Qu)
=@@f (p=p " AQ =Q-Qu Ap+r—aap’” AQx C Q) then id_up
else None)> |

br_answer:
<spectroscopy_moves (Defender_Branch p o p’ Q Qo) (Attacker_Conjunct p’’ q)
= (if (p = p’> AN q € Q) then (subtract 01 1 0 0 0 0 0) else None)> |

br_obsv:
<spectroscopy_moves (Defender Branch p a p’ Q Qa) (Attacker_Branch p’’ Q’)
= (if (p’ = p’’ A Qu —asS a Q’)
then Some (Ae. Option.bind ((subtract_fn 0 1 1 0 0 0 0 0) e) minil_6) else None)> |

br_acct:
<spectroscopy_moves (Attacker_Branch p Q) (Attacker_Immediate p’ Q’)
= (if p=p’> A Q = Q’ then subtract 1 0 0 0 0 0 0 O else None)> |

others: <spectroscopy_moves _ _ = None>

fun spectroscopy_defender where

<spectroscopy_defender (Attacker_Immediate _ _) = False> |
<spectroscopy_defender (Attacker_Branch _ _) = False> |
<spectroscopy_defender (Attacker_Conjunct _ _) = False> |
<spectroscopy_defender (Attacker_Delayed _ _) = False> |
<spectroscopy_defender (Defender_Branch _ _ _ _ _ ) = True> |
<spectroscopy_defender (Defender_Conj _ _) = True> |
<spectroscopy_defender (Defender_Stable_Conj _ _) = True>

8.2 Energy Game Properties

Now, we are able to define the weak spectroscopy game on an arbitrary LTS.

sublocale weak_spectroscopy_game:
energy_game <spectroscopy_moves> <spectroscopy_defender> < (L)>
proof
fix e e’ ::energy
show <e < e’ = e’ < e => e = e’> unfolding less_eq_energy_def
by (smt (z3) energy.case_eq_if energy.expand nle_le)
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next
fix g g’ e e’ eu eu’
assume monotonicity_assms:

<spectroscopy_moves g g’ # None>
<the (spectroscopy_moves g g’) e = Some eu>
<the (spectroscopy_moves g g’) e’ = Some eu’>

<e < e’>
show <eu < eu’>
proof (cases g)
case (Attacker_Immediate p Q)
with monotonicity_assms
show 7thesis
by (cases g’, simp_all, (smt (23) option.distinct(l) option.sel minus_component_leq)+)
next
case (Attacker_Branch p Q)
with monotonicity_assms
show 7thesis
by (cases g’, simp_all, (smt (z3) option.distinct(l) option.sel minus_component_leq)+)
next
case (Attacker_Conjunct p q)
hence <dp’ Q’. g’= (Attacker_Delayed p’ Q’)>
using monotonicity_assms(1,2)
by (induct, auto)
hence <spectroscopy_moves g g’ = Some minl_6
V spectroscopy_moves g g’
= Some (MAe. Option.bind ((subtract_fn 0 0 0 0 0 0 0 1) e) minl_7)>
using monotonicity_assms(1,2) Attacker_Conjunct
by (smt (verit, ccfv_threshold) spectroscopy_moves.simps(7))
thus 7thesis
proof safe
assume <spectroscopy_moves g g’ = Some minl_6>
thus ?thesis
using monotonicity_assms min.mono
unfolding leq_components
by (metis min_1_6_simps option.sel)
next
assume <spectroscopy_moves g g’
= Some (Ae. Option.bind (if ~E00000001< e
then None else Some (e —~E000O0O0O0O 1)) minl1_7)>
thus ?thesis
unfolding min_1_7_subtr_simp
using monotonicity_assms
by (smt (z3) enat_diff_mono energy.sel leq_components min.mono
option.distinct(1) option.sel)
qed
next
case (Attacker_Delayed p Q)
hence <(dp’ Q’. g’ = Attacker_Delayed p’ Q’) V
(dp’ Q’. g’ = Attacker_Immediate p’ Q’) V
(3p’ Q°. g’ = Defender_Conj p’ Q’) V
(dp’ Q’. g’ = Defender_Stable_Conj p’ Q’) V
(dp’ p’’ Q> a Qv . g’ = Defender_Branch p’ «a p’’ Q’ Qa)>
using monotonicity_assms(1)
by (induct, auto)
thus 7thesis
proof (safe)
fix p’ Q’
assume <g’ = Attacker_Delayed p’ Q’>
thus <eu < eu’>
using Attacker_Delayed monotonicity_assms local.procrastination
by (metis option.sel)

76



next
fix p’ Q’
assume <g’ = Attacker_Immediate p’ Q’>
hence <spectroscopy_moves g g’ = (subtract 1 0 0 00 0 0 0)>
using Attacker_Delayed monotonicity_assms local.observation
by (clarify, presburger)
thus <eu < eu’>
by (smt (verit, best) mono_subtract monotonicity_assms option.distinct(l) option.sel)

next
fix p’> Q’
assume <g’ = Defender_Conj p’ Q’>

thus <eu < eu’>
using Attacker_Delayed monotonicity_assms local.late_inst_conj
by (metis option.sel)

next

fix p’ Q’

assume <g’ = Defender_Stable_Conj p’ Q’>

thus <eu < eu’>
using Attacker_Delayed monotonicity_assms local.late_stbl_conj
by (metis (no_types, lifting) option.sel)

next
fix p’ p’’ Q’ o Qo
assume <g’ = Defender_Branch p’ « p’’ Q’ Qo>

thus <eu < eu’>
using Attacker_Delayed monotonicity_assms local.br_conj
by (metis (no_types, lifting) option.sel)
qed
next
case (Defender_Branch p a p’ Q’ Qa)
with monotonicity_assms show 7thesis
by (cases g’, auto simp del: leq_components, unfold min_1_6_subtr_simp)
(smt (23) enat_diff_mono mono_subtract option.discI energy.sel
leq_components min.mono option.distinct(1l) option.inject)+
next
case (Defender_Conj p Q)
with monotonicity_assms show 7thesis
by (cases g’, simp_all del: leq_components)
(smt (verit, ccfv_SIG) mono_subtract option.discI option.sel)
next
case (Defender_Stable_Conj x71 x72)
with monotonicity_assms show 7thesis
by (cases g’, simp_all del: leq_components)
(smt (verit, ccfv_SIG) mono_subtract option.discI option.sel)+
qed
next
fix g g’ e e’
assume defender_win_min_assms:

<e < e’>

<spectroscopy_moves g g’ # None>

<the (spectroscopy_moves g g’) e’ = None>
thus

<the (spectroscopy_moves g g’) e = None>
proof (cases g)
case (Attacker_Immediate p Q)
with defender_win_min_assms show 7thesis
by (cases g’, auto simp del: leq_components)
(smt (verit, best) option.distinct(l) option.inject order.trans)+
next
case (Attacker_Branch p Q)
with defender_win_min_assms show 7thesis
by (cases g’, auto)
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(smt (verit, best) option.distinct(l) option.inject order.trans)+
next
case (Attacker_Conjunct p q)
hence <dp’ Q’. g’= (Attacker_Delayed p’ Q’)>
using defender_win_min_assms(2) by (induct, auto)
hence <spectroscopy_moves g g’ = Some minl_6
V spectroscopy_moves g g’ = Some (Ae. Option.bind ((subtract_fn 0 0 0 0 0 0 0 1) e) minl_7)>
using defender_win_min_assms(2) Attacker_Conjunct
by (smt (verit, ccfv_threshold) spectroscopy_moves.simps(7))
thus 7thesis
proof safe
assume <spectroscopy_moves g g’ = Some minl_6>
thus <the (spectroscopy_moves g g’) e = None>
using defender_win_min_assms min_1_6_some by fastforce
next
assume <spectroscopy_moves g g’
= Some (Ae. Option.bind (if ~E00000001< e
then None else Some (e —~E 0 00O0O0O0O 1)) min1_7)>
thus <the (spectroscopy_moves g g’) e = None>
using defender_win_min_assms(1,3) bind.bind_lunit dual_order.trans min_1_7_some
by (smt (verit, best) option.sel)
qed
next
case (Attacker_Delayed p Q)
hence <(3p’ Q’. g’=(Attacker_Delayed p’ Q’)) V
(3p’ Q’. g’=(Attacker_Immediate p’ Q’)) V
(dp’ Q’. g’=(Defender_Conj p’ Q’)) V
(3p’ Q’. g’=(Defender_Stable_Conj p’ Q’)) V
(dp’ p’’ Q@ a Qo . g’= (Defender_Branch p’ a p’’ Q’ Qa))>
using defender_win_min_assms(2) by (induct, auto)
thus 7thesis
proof (safe)
fix p’ Q’°
assume <g’ = Attacker_Delayed p’ Q’>
hence False
using Attacker_Delayed defender_win_min_assms(2,3) local.procrastination
by (metis option.distinct(l) option.sel)
thus <the (spectroscopy_moves g (Attacker_Delayed p’ Q’)) e = None>

next
fix p’ Q’
assume <g’ = Attacker_Immediate p’ Q’>

moreover hence <spectroscopy_moves g g’ = (subtract 1 0 000 0 0 0)>
using Attacker_Delayed defender_win_min_assms(2,3) local.observation
by (clarify, presburger)
moreover hence <-E 1 0000000 < e’>
using defender_win_min_assms by force
ultimately show <the (spectroscopy_moves g (Attacker_Immediate p’ Q’)) e = None>
using defender_win_min_assms(1) by force

next
fix p’ Q’
assume <g’ = Defender_Conj p’ Q’>

hence False
using Attacker_Delayed defender_win_min_assms(2,3) local.late_inst_conj
by (metis option.distinct(l) option.sel)

thus <the (spectroscopy_moves g (Defender_Conj p’ Q’)) e = None>

next

fix p’> Q’

assume <g’ = Defender_Stable_Conj p’ Q’>

hence False
using Attacker_Delayed defender_win_min_assms(2,3) local.late_stbl_conj
by (metis (no_types, lifting) option.distinct(1l) option.sel)
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thus <the (spectroscopy_moves g (Defender_Stable_Conj p’ Q’)) e = None>

next
fix p’ p’’ Q’ o Qo
assume <g’ = Defender_Branch p’ a p’’ Q’ Qo>

hence False
using Attacker_Delayed defender_win_min_assms(2,3) local.br_conj
by (metis (no_types, lifting) option.distinct(1l) option.sel)
thus <the (spectroscopy_moves g (Defender_Branch p’ a p’’ Q’ Qu)) e = None>
qed
next
case (Defender_Branch p a p’ Q’ Qa)
hence <(3q’€Q’. g’ = Attacker_Conjunct p q’)
V (dQa’. Qa +—aS a Qa’ A g’ = Attacker_Branch p’ Qa’)>
using defender_win_min_assms by (cases g’, auto) (metis not_None_eq)+
hence < (spectroscopy_moves g g’) = (subtract 0 1 1 00 0 0 0) V
(spectroscopy_moves g g’) = Some (Ae. Option.bind (subtract_fn 0 1 1 0 0 0 0 O e) minl_6)>
using Defender_Branch option.collapse[0F defender_win_min_assms(2)]
by (cases g’, auto)
thus 7thesis
using defender_win_min_assms min_1_6_some
by (smt (verit, best) bind.bind_lunit option.distinct(l) dual_order.trans option.sel)
next
case (Defender_Conj p Q)
with defender_win_min_assms show 7thesis
by (cases g’, auto)
(smt (verit, best) option.distinct(l) option.inject order.trans)+
next
case (Defender_Stable_Conj x71 x72)
with defender_win_min_assms show 7thesis
by (cases g’, simp_all del: leq_components)
(smt (verit) dual_order.trans option.discI option.sel)+
qed
qed

abbreviation <spectro_att_wins = weak_spectroscopy_game.attacker_wins>
end — of 1ts_tau

end
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9 Correctness

Energy levels where the defender wins in the spectroscopy game and equivalences coincide in the
following sense: There exists a formula ¢ distinguishing a process p from a set of processes Q with ex-
pressiveness price of at most e if and only if e is in attacker’s winning budget of Attacker_Immediate
p Q.

The proof is split into two directions, closely following the structure of [3]. The forward direction
is given by the lemma distinction_implies_winning_budgets combined with the upwards closure
of winning budgets. To show the other direction, one can construct a (strategy) formula with an
appropriate price using the constructive proof of winning_budget_implies_strategy_formula.

9.1 Distinction Implies Winning Budgets

theory Distinction_Implies_Winning_Budgets
imports Spectroscopy_Game Expressiveness_Price
begin

context lts_tau
begin

We prove that if a formula distinguishes process p from a set of process Q, then the price of this
formula is in attacker’s winning budgets.

lemma distinction_implies_winning_budgets_empty_Q:
assumes
<distinguishes_from ¢ p {}>
shows
<spectro_att_wins (expressiveness_price @) (Attacker_Immediate p {})>
using assms
proof -
have <spectroscopy_moves (Defender_Conj p {}) p’ = None> for p’
by(rule spectroscopy_moves.elims, auto)
moreover have <spectroscopy_defender (Defender_Conj p {})> by simp
ultimately have conj_win: <spectro_att_wins (expressiveness_price ¢) (Defender_Conj p {})>
by (simp add: weak_spectroscopy_game.attacker_wins.Defense)
from late_inst_conjlof p <{}> p <{}>] have next_moveO:
<spectroscopy_moves (Attacker_Delayed p {}) (Defender_Conj p {}) = id_up> by force
from delay[of p <{}> p <{}>] have next_movel:
<spectroscopy_moves (Attacker_Immediate p {}) (Attacker_Delayed p {}) = id_up> by force
moreover have <weak_spectroscopy_game.attacker (Attacker_Immediate p {})> by simp
ultimately show 7thesis
using weak_spectroscopy_game.attacker_wins.Attack next_move0 next_movel
by (metis conj_win option.distinct(1l) option.sel spectroscopy_defender.simps(4))
qed

lemma distinction_implies_winning_budgets:
assumes
<distinguishes_from ¢ p Q>
shows
<spectro_att_wins (expressiveness_price ¢) (Attacker_Immediate p Q)>
proof -
have
< (VQ p. Q # {} — distinguishes_from ¢ p Q
— spectro_att_wins (expressiveness_price ) (Attacker_Immediate p Q))
A
((Vp Q. Q # {} — hml_srbb_inner.distinguishes_from x p @ — Q —»S Q
— spectro_att_wins (expr_pr_inner x) (Attacker_Delayed p Q))
ANNWU_IUpQ x=Conj¥VIiIVv —
Q # {} — hml_srbb_inner.distinguishes_from x p Q
— spectro_att_wins (expr_pr_inner x) (Defender_Conj p Q))
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AN (WVY_I ¥ p Q. x = StableConj V_ I ¥ —
Q # {} — hml_srbb_inner.distinguishes_from x p @ — (Vq € Q. #q’. q — 7 q°)
— spectro_att_wins (expr_pr_inner x) (Defender_Stable_Conj p Q))
ANNWVY_ IV aeppQp’ Qa. x =BranchConj a ¢ V.I ¥ —
hml_srbb_inner.distinguishes_from y p Q — p —a a p° — p’ =SRBB ¢ —
Q_a = Q - hml_srbb_inner.model_set (Obs a ¢)
— spectro_att_wins (expr_pr_inner x) (Defender Branch p a p’ (Q - Q_a) Q_a)))
A
(Vp q. hml_srbb_conj.distinguishes ¢ p q
— spectro_att_wins (expr_pr_conjunct 1)) (Attacker_Conjunct p q))>
for ¢ x ¥
proof -
fix ¢ X ¢
show <(VQ p. Q@ # {} — distinguishes_from ¢ p Q
— spectro_att_wins (expressiveness_price ¢) (Attacker_Immediate p Q))
A
((Vp Q. Q # {} — hml_srbb_inner.distinguishes_from x p Q — Q —»S Q
— spectro_att_wins (expr_pr_inner x) (Attacker_Delayed p Q))
ANANWY IUYpQ x=Conj VIV —
Q # {} — hml_srbb_inner.distinguishes_from x p Q
— spectro_att_wins (expr_pr_inner x) (Defender_Conj p Q))
A (WU_I ¥ p Q. x = StableConj V_.I ¥ —»
Q # {} — hml_srbb_inner.distinguishes_from ¥ p @ — (Vq € Q. #q’. q — 7 q’)
— spectro_att_wins (expr_pr_inner x) (Defender_Stable_Conj p Q))
AN NVUY_ IV aepQp” Qa. x = BranchConj a o V_.I ¥ —
hml_srbb_inner.distinguishes_from x p Q — p —a « p’ — p’ ESRBB ¢ —
Q_a = Q - hml_srbb_inner.model_set (Obs a ¢)
— spectro_att_wins (expr_pr_inner y) (Defender Branch p a p’ (@ - Q_a) Q_a)))
A
(Vp q. hml_srbb_conj.distinguishes ¢ p q
— spectro_att_wins (expr_pr_conjunct @) (Attacker_Conjunct p q))>
proof (induct rule: hml_srbb_hml_srbb_inner_hml_srbb_conjunct.inductl[of _ _ _ ¢ x %1)
case TT
then show 7case
proof (clarify)
fix Q p
assume <Q # {}> <distinguishes_from TT p Q>
hence <dq. q € Q>
by blast
then obtain q where <q € Q> by auto
hence <distinguishes TT p g>
using <distinguishes_from TT p Q> distinguishes_from_def by auto
with verum_never_distinguishes
show <spectro_att_wins (expressiveness_price TT) (Attacker_Immediate p Q)>
by blast
qed
next
case (Internal Yx)
show 7case
proof (clarify)
fix Q p
assume <Q # {}> <distinguishes_from (Internal x) p Q>
then have
<3p’. p = p’ A hml_srbb_inner_models p’ x>
<Vq € Q. ($q’. 9 = q’ A hml_srbb_inner_models q’ x)>
by auto
hence <Vq € Q. (Vq’. q = q’> — —(hml_srbb_inner_models q’ x))> by auto
then have <Vq € Q. (Vq’€Q’. q — q’ — —(hml_srbb_inner_models q’ x))>
for Q’ by blast
then have <Q —»S Q° — (Vq’ € Q’. —(hml_srbb_inner_models q’ x))>
for Q’ using <Q # {}> by blast
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define Q7 where <Q7 = silent_reachable_set Q>
with <AQ’. Q =8 Q> — (Vq’ € Q’. —(hml_srbb_inner_models q’ x))>
have <Vq’ € Qr. —(hml_srbb_inner_models q’ x)>
using sreachable_set_is_sreachable by presburger
have <Q7 —S Q7> unfolding Q7_def
by (metis silent_reachable_trans sreachable_set_is_sreachable
silent_reachable.intros(1))
from <3Jp’. p —» p’ A (hml_srbb_inner_models p’ x)>
obtain p’ where <p —» p’> <hml_srbb_inner_models p’ x> by auto
from this(1) have <p —»L p’> using silent_reachable_impl_loopless by blast
have <Qr # {}>
using silent_reachable.intros(1l) sreachable_set_is_sreachable Q7_def <Q # {}>
by fastforce
from <hml_srbb_inner_models p’ x> <Vq’ € Q7. —(hml_srbb_inner_models q’ x)>
have <hml_srbb_inner.distinguishes_from x p’ Q7> by simp
with <Q7 —»S Q7> <Qr # {}> Internal
have <spectro_att_wins (expr_pr_inner x) (Attacker_Delayed p’ Q7)>
by blast
moreover have <expr_pr_inner Yy = expressiveness_price (Internal x)> by simp
ultimately have <spectro_att_wins (expressiveness_price (Internal x))
(Attacker_Delayed p’ Qr)> by simp
hence <spectro_att_wins (expressiveness_price (Internal X)) (Attacker_Delayed p Qr)>
proof (induct rule: silent_reachable_loopless.induct[of <p> <p’>, OF <p —»L p’>])
case (1 p)
thus 7case by simp
next
case 2 pp’p’Y)
hence <spectro_att_wins (expressiveness_price (Internal Y))
(Attacker_Delayed p’ Q7)>
by simp
moreover have <spectroscopy_moves (Attacker_Delayed p Q7r) (Attacker_Delayed p’ Qr)
= id_up> using spectroscopy_moves.simps(2) <p # p’> <p +—7 p’> by auto
moreover have <weak_spectroscopy_game.attacker (Attacker_Delayed p Q7)> by simp
ultimately show 7case
using weak_spectroscopy_game.attacker_wins_Ga_with_id_step by auto
qed
have <Q —S Q7>
using Q7_def sreachable_set_is_sreachable by simp
hence <spectroscopy_moves (Attacker_Immediate p Q) (Attacker_Delayed p Q7) = id_up>
using spectroscopy_moves.simps(1l) by simp
with <spectro_att_wins (expressiveness_price (Internal x)) (Attacker_Delayed p Q7)>
show <spectro_att_wins (expressiveness_price (Internal X)) (Attacker_Immediate p Q)>
using weak_spectroscopy_game.attacker_wins_Ga_with_id_step
by (metis option.discI option.sel spectroscopy_defender.simps(1))
qed
next
case (ImmConj I %s)
show 7case
proof (clarify)
fix Q p
assume <Q # {}> and <distinguishes_from (ImmConj I ¢s) p Q>
from this(2) have <Vq€Q. p ESRBB ImmConj I ¢s A — q ESRBB ImmConj I vs>
unfolding distinguishes_from_def distinguishes_def by blast
hence <Vq€Q. Ji€I. hml_srbb_conjunct_models p (¢s i)
A —hml_srbb_conjunct_models q (¢s i)>
by simp
hence <Vq€Q. Ji€I. hml_srbb_conj.distinguishes (¢s i) p q>
using hml_srbb_conj.distinguishes_def by simp
hence <VqeQ. Ji€I. ((¢s i) € range s)
A hml_srbb_conj.distinguishes (i)s i) p 9> by blast
hence <VqeQ. Jie€l.
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spectro_att_wins (expr_pr_conjunct (¢¥s i)) (Attacker_Conjunct p q)>
using ImmConj by blast
hence a_clause_wina:
<VqeqQ. Jiel.
spectro_att_wins (expressiveness_price (ImmConj I ¢s) ~E 0010100 0)
(Attacker_Conjunct p q) >
using expressiveness_price_ImmConj_geq_parts
weak_spectroscopy_game.win_a_upwards_closure by fast
from this <Q # {}> have <I # {}> by blast
hence subtracts:
<subtract_fn 0 0 1 0 1 0 0 O (expressiveness_price (ImmConj I s))
= Some (expressiveness_price (ImmConj I #s) —~E 0010100 0)>
<subtract_fn 0 0 1 0 0 0 0 O (expressiveness_price (ImmConj I ¥s)
-E00001000)
= Some (expressiveness_price (ImmConj I #s) —~E 0010100 0)>
by (simp add: <I # {}»>)+
have def_conj: <spectroscopy_defender (Defender_Conj p Q)> by simp
have <spectroscopy_moves (Defender_Conj p Q) N # None
—> N = Attacker_Conjunct (attacker_state N) (defender_state N)> for N
by (metis spectroscopy_moves.simps(29,30,33,34,58,62)
spectroscopy_position.exhaust_sel)
hence move_kind: <spectroscopy_moves (Defender_Conj p Q) N # None
=—> 3q€Q. N = Attacker_Conjunct p q> for N
using conj_answer by metis
hence update: <Ag’. spectroscopy_moves (Defender_Conj p Q) g’ # None —>
weak_spectroscopy_game.weight (Defender_Conj p Q) g’ = subtract_fn 0 01 0 0 0 0 0>
by fastforce
hence move_wina: </g’. spectroscopy_moves (Defender_Conj p Q) g’ # None
—> (subtract_fn 0 0 1 0 0 0 O 0) (expressiveness_price (ImmConj I %s)
-E00001000)
= Some (expressiveness_price (ImmConj I ¢s) ~-E 001010
A spectro_att_wins (expressiveness_price (ImmConj I %s) - E O
using move_kind a_clause_wina subtracts by blast
from weak_spectroscopy_game.attacker_wins.Defense[OF def_conj] update move_wina have
def_conj_wina:
<spectro_att_wins (expressiveness_price (ImmConj I #s) ~E 0 000 10 0 0)
(Defender_Conj p Q)>
by (metis (lifting))
have imm_to_conj:
<spectroscopy_moves (Attacker_Immediate p Q) (Defender_Conj p Q) # None>
by (simp add: <Q # {}>)
have imm_to_conj_wgt:
<weak_spectroscopy_game.weight (Attacker_Immediate p Q) (Defender_Conj p Q)
(expressiveness_price (ImmConj I %s))
= Some (expressiveness_price (ImmConj I ¢s) ~E 0000100 0)>
using <Q # {}> leq_components subtracts(l) by force
from weak_spectroscopy_game.Attack[OF _ imm_to_conj imm_to_conj_wgt] def_conj_wina

0 0)
0101000) g’>

show
<spectro_att_wins (expressiveness_price (ImmConj I /s)) (Attacker_Immediate p Q)>
by simp
qed
next
case (Obs a @)
have

<Vp Q. Q # {} — hml_srbb_inner.distinguishes_from (hml_srbb_inner.Obs a ¢) p Q
—> Q@ —»S Q — spectro_att_wins (expr_pr_inner (hml_srbb_inner.Obs « ¢))
(Attacker_Delayed p Q) >
proof (clarify)
fix p Q
assume

Q #
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<hml_srbb_inner.distinguishes_from (hml_srbb_inner.0bs « ¢) p Q>
< VpeQ. Vq. p »+q — q € @
have <3Jp’ Q’. p —a a p’ A Q —asS a Q’
A spectro_att_wins (expressiveness_price ) (Attacker_Immediate p’ Q’)>
proof (cases <a = 7>)
case True
with <hml_srbb_inner.distinguishes_from (hml_srbb_inner.0bs « ¢) p Q>
have dist_unfold: <((3p’. p —7 p’ A p’ ESRBB ¢) V p ESRBB ¢)> by simp
then obtain p’ where <p’ =SRBB ¢> <p —a a p’>
unfolding True by blast
from <hml_srbb_inner.distinguishes_from (hml_srbb_inner.Obs a ¢) p Q> have
<¥qeQ. (-~ q E=SRBB ) A (fq’. q =7 q’ A q’ [=SRBB ¢)>
using True by auto
hence <Vq€Q. —q ESRBB ¢>
using <Vp€eQR. Vq. p —» 9 — q € Q> by fastforce
hence <distinguishes_from ¢ p’ Q>
using <p’ E=SRBB ¢> by auto
with Obs have <spectro_att_wins (expressiveness_price ¢) (Attacker_Immediate p’ Q)>
using <Q # {}> by blast
moreover have <Q —aS a Q>
unfolding True
using <VpeQ. Vq. p =+ @ — q € Q> silent_reachable_append_T
silent_reachable.intros(1) by blast
ultimately show 7thesis using <p —a o p’> by blast
next
case False
with <hml_srbb_inner.distinguishes_from (hml_srbb_inner.Obs a ¢) p Q>
obtain p’’ where <(p —a p’’) A (p’’ [=SRBB ¢)> by auto
let 7Q’ = <step_set Q a>
from <hml_srbb_inner.distinguishes_from (hml_srbb_inner.Obs a ¢) p Q>
have <Vq€?Q’. — q =SRBB ¢>
using <Q # {}> and step_set_is_step_set
by force
from <Vq€Estep_set Q o. = q =SRBB > <p —a p’’ A p’’ |=SRBB ¢>
have <distinguishes_from ¢ p’’ 7Q’> by simp
hence <spectro_att_wins (expressiveness_price ) (Attacker_Immediate p’’ 7Q’)>
by (metis Obs distinction_implies_winning budgets_empty_Q)
moreover have <p —a p’’> using <p —a p’’ A p’’ E=SRBB > by simp
moreover have <Q +—aS «a 7Q’> by (simp add: False lts.step_set_is_step_set)
ultimately show ?7thesis by blast
qed
then obtain p’ Q’ where p’_Q’: <p —a a p’> <Q —aS a Q’> and
wina: <spectro_att_wins (expressiveness_price @) (Attacker_Immediate p’ Q’)> by blast
have attacker: <weak_spectroscopy_game.attacker (Attacker_Delayed p Q)> by simp
have
<spectroscopy_moves (Attacker_Delayed p Q) (Attacker_Immediate p’ Q’) =
(if Ja. p+—a ap’ A Q —aS a Q’ then subtract 1 0 0 0 0 0 O O else None)>
for p Q p’ Q’ by simp
from this[of p Q p’ Q’] have
<spectroscopy_moves (Attacker_Delayed p Q) (Attacker_Immediate p’ Q’) =
subtract 1 0 0 0 0 0 0 0> using p’_Q’ by auto
with expr_obs_phi[of a ¢] show
<spectro_att_wins (expr_pr_inner (hml_srbb_inner.Obs « ¢)) (Attacker_Delayed p Q) >
using weak_spectroscopy_game.Attack[0F attacker _ _ wina]
by (smt (verit, best) option.sel option.simps(3))
qed
then show 7case by fastforce
next
case (Conj I %s)
have main_case:
<VW¥_I ¥ p Q. hml_srbb_inner.Conj I s = hml_srbb_inner.Conj ¥_I ¥ —
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Q # {} — hml_srbb_inner.distinguishes_from (hml_srbb_inner.Conj I #s) p Q
— spectro_att_wins (expr_pr_inner (hml_srbb_inner.Conj I ws)) (Defender_Conj p Q)~>
proof clarify
fix p Q
assume case_assms:
<Q # {¥
<hml_srbb_inner.distinguishes_from (hml_srbb_inner.Conj I %s) p Q>
hence distinctions: <Vq€Q. Ji€I. hml_srbb_conj.distinguishes (¢s i) p q>
by auto
hence inductive_wins: <Vq€Q. Ji€I. hml_srbb_conj.distinguishes (i)s i) p q
A spectro_att_wins (expr_pr_conjunct (¢)s i)) (Attacker_Conjunct p q)>
using Conj by blast
define tqs where
<ipgs = Aq. (SOME ¢. Ji€l. ¢ = s i A hml_srbb_conj.distinguishes ¢ p q
A spectro_att_wins (expr_pr_conjunct 1)) (Attacker_Conjunct p q))>
with inductive_wins somel have 1)qs_spec:
<VqeQ. Ji€l. ¢gs q = ¥s i A hml_srbb_conj.distinguishes (¢gs q ) p q
A spectro_att_wins (expr_pr_conjunct (¢gs q)) (Attacker_Conjunct p q)>
by (smt (verit))
have conjuncts_present:
<Vq€Q. expr_pr_conjunct (¢gs q) € expr_pr_conjunct ¢ (igs ¢ Q)>
using <Q # {}> by blast
define e’ where <e’ = E
(Sup (modal_depth ¢ (expr_pr_conjunct ¢ (¥gs ¢ Q))))
(Sup (br_conj_depth ¢ (expr_pr_conjunct ¢ (iqs ¢ Q))))
(Sup (conj_depth ¢ (expr_pr_conjunct ¢ (igs ¢ Q))))
(Sup (st_conj_depth ¢ (expr_pr_conjunct ¢ (i¢gs ¢ Q))))
(Sup (imm_conj_depth (expr_pr_conjunct ¢ (¥gs ¢ Q))))
(Sup (pos_conjuncts (expr_pr_conjunct ¢ (¥gs ¢ Q))))
(Sup (neg_conjuncts (expr_pr_conjunct ¢ (¥gs ¢ Q))))
(Sup (neg_depth ¢ (expr_pr_conjunct ¢ (iqs ¢ Q))))>
from conjuncts_present have <Vq€Q. (expr_pr_conjunct (ygs q)) < e’>
unfolding e’_def
by (metis SUP_upper energy.sel leq_components)
with 1qgs_spec weak_spectroscopy_game.win_a_upwards_closure
have clause_win: <Vq€Q. spectro_att_wins e’ (Attacker_Conjunct p q)> by blast
define eu’ where <eu’ = E
(Sup (modal_depth ¢ (expr_pr_conjunct ¢ (¢s ¢ I))))
(Sup (br_conj_depth ¢ (expr_pr_conjunct ¢ (¢s ¢ I))))
(Sup (conj_depth ¢ (expr_pr_conjunct ¢ (¢s ¢ I))))
(Sup (st_conj_depth ¢ (expr_pr_conjunct ‘ (s ¢ I))))
(Sup (imm_conj_depth (expr_pr_conjunct ¢ (s ¢ I))))
(Sup (pos_conjuncts (expr_pr_conjunct ¢ (s ¢ 1I))))
(Sup (neg_conjuncts ¢ (expr_pr_conjunct ¢ (¢s ¢ I))))
(Sup (neg_depth ¢ (expr_pr_conjunct ¢ (s ¢ I))))>
have subset_form: <iygs ‘ Q C ¢s ¢ I>
using 1qs_spec by fastforce
hence <e’ < eu’> unfolding e’_def eu’_def leq_components
by (simp add: Sup_subset_mono image_mono)
define e where <e = E
(modal_depth e’)
(br_conj_depth e’)
(1 + conj_depth e’)
(st_conj_depth e’)
(imm_conj_depth e’)
(pos_conjuncts e’)
(neg_conjuncts e’)
(neg_depth e’)>
have <e’ = e - (E00 10000 0)> unfolding e_def e’_def by simp
hence <Some e’ = (subtract_fn 0 0 1 0 0 0 0 0) e>
by (auto, smt (verit) add_increasing2 e_def energy.sel
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energy_leq_cases i0_lb le_numeral_extra(4))
have expr_lower: <(E 00100 0 0 0) < expr_pr_inner (Conj I ts)>
using case_assms(1l) subset_form by auto
have eu’_comp: <eu’ = (expr_pr_inner (Conj I ¢s)) - (E0 010000 0)>
unfolding eu’_def
by (auto simp add: bot_enat_def image_image)
with expr_lower have eu’_characterization:
<Some eu’ = (subtract_fn 0 01 0 0 0 0 0) (expr_pr_inner (Conj I %s))>
by presburger
have <Vg’. spectroscopy_moves (Defender_Conj p Q) g’ # None
— (dq€Q. (Attacker_Conjunct p q) = g’)
A spectroscopy_moves (Defender_Conj p Q) g’ = Some (subtract_fn 0 0 1 0 0 0 0 0)>
proof clarify
fix g’ upd
assume upd_def: <spectroscopy_moves (Defender_Conj p Q) g’ = Some upd>
hence </Apx q. g’ = Attacker_Conjunct px q
— p=px Aq € QA upd = (subtract_fn 0 0 1 000 0 0)>
by (metis (mono_tags, lifting) local.conj_answer option.sel option.simps(3))
with upd_def show
<(3q€Q. Attacker_Conjunct p q = g’)
A spectroscopy_moves (Defender_Conj p Q) g’ = Some (subtract_fn 0 01 00 0 0 0)>
by (cases g’, auto)
qed
hence <Vg’. spectroscopy_moves (Defender_Conj p Q) g’ # None
— (de’. (the (spectroscopy_moves (Defender_Conj p Q) g’)) e = Some e’
A spectro_att_wins e’ g’)>
unfolding e_def
using clause_win <Some e’ = (subtract_fn 0 0 1 0 0 0 0 0) e> e_def by force
hence <spectro_att_wins e (Defender_Conj p Q)>
unfolding e_def using weak_spectroscopy_game.attacker_wins.Defense
by auto
moreover have <e < expr_pr_inner (Conj I ts)>
using <e’ < eu’> eu’_characterization <Some e’ = (subtract_fn 0 0 1 0 0 0 0 0) e>
expr_lower case_assms(1l) subset_form e_def
by (smt (verit, ccfv_threshold) eu’_comp add_diff_cancel_enat
add_mono_thms_linordered_semiring(1l) enat.simps(3) enat_defs(2) energy.sel
expr_pr_inner.simps idiff_O_right inst_conj_depth_inner.simps(2) le_numeral_extra(4)
leq_components minus_energy_def not_one_le_zero)
ultimately show
<spectro_att_wins (expr_pr_inner (hml_srbb_inner.Conj I ws)) (Defender_Conj p Q)>
using weak_spectroscopy_game.win_a_upwards_closure by blast
qed
moreover have
<Vp Q. Q # {} — hml_srbb_inner.distinguishes_from (hml_srbb_inner.Conj I %¢s) p Q
—» Q@ —»S Q — spectro_att_wins (expr_pr_inner (hml_srbb_inner.Conj I ¥s))
(Attacker_Delayed p Q) >
proof clarify
fix p Q
assume
<«Q # {¥
<hml_srbb_inner.distinguishes_from (hml_srbb_inner.Conj I %s) p Q>
hence
<spectro_att_wins (expr_pr_inner (hml_srbb_inner.Conj I v¢s)) (Defender_Conj p Q)>
using main_case by blast
moreover have <spectroscopy_moves (Attacker_Delayed p Q) (Defender_Conj p Q) = id_up>
by auto
ultimately show
<spectro_att_wins (expr_pr_inner (hml_srbb_inner.Conj I %s))
(Attacker_Delayed p Q)>
by (metis weak_spectroscopy_game.attacker_wins_Ga_with_id_step option.discI
option.sel spectroscopy_defender.simps(4))
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qed
ultimately show 7case by fastforce
next
case (StableConj I ts)
— The following proof is virtually the same as for Conj I s
have main_case: <(VW_I ¥ p Q. StableConj I ¢s = StableConj ¥ _I ¥ —
Q # {} — hml_srbb_inner.distinguishes_from (StableConj I %¥s) p Q —
(Vqeq. #q’. q =7 q°)
— spectro_att_wins (expr_pr_inner (StableConj I ts)) (Defender_Stable_Conj p Q))>
proof clarify
fix p Q
assume case_assms:
<Q #{P
<hml_srbb_inner.distinguishes_from (StableConj I 3s) p Q>
<VqeQ. #q’. q =71 q’>
hence distinctions: <Vq€Q. Ji€I. hml_srbb_conj.distinguishes (¢s i) p g>
by (metis hml_srbb_conj.distinguishes_def hml_srbb_inner.distinguishes_from_def
hml_srbb_inner_models.simps(3))
hence inductive_wins: <Vq€Q. Ji€I. hml_srbb_conj.distinguishes (is i) p q
A spectro_att_wins (expr_pr_conjunct (¢s i)) (Attacker_Conjunct p q)>
using StableConj by blast
define tqs where
<ipqgs = Aq. (SOME ¢. Ji€l. ¢ = s i A hml_srbb_conj.distinguishes ¢ p q
A spectro_att_wins (expr_pr_conjunct 1)) (Attacker_Conjunct p q))>
with inductive_wins somel have 1)qs_spec:
<Vq€eQ. Ji€l. 3gs q = s i A hml_srbb_conj.distinguishes (¢/qs q ) p q
A spectro_att_wins (expr_pr_conjunct (¢gs q)) (Attacker_Conjunct p q)>
by (smt (verit))
have conjuncts_present:
<Vq€Q. expr_pr_conjunct (¢gqs q) € expr_pr_conjunct ¢ (igs ¢ Q)>
using <Q # {}> by blast
define e’ where <e’ = E
(Sup (modal_depth ¢ (expr_pr_conjunct ¢ (¥gs ‘¢ Q))))
(Sup (br_conj_depth ¢ (expr_pr_conjunct ¢ (iqs ¢ Q))))
(Sup (conj_depth ¢ (expr_pr_conjunct ¢ (¢gs ¢ Q))))
(Sup (st_conj_depth ¢ (expr_pr_conjunct ¢ ()gs ° Q))))
(Sup (imm_conj_depth (expr_pr_conjunct ¢ (¥gs ¢ Q))))
(Sup (pos_conjuncts (expr_pr_conjunct ¢ (¢gs ¢ Q))))
(Sup (neg_conjuncts (expr_pr_conjunct ¢ (¥gs ¢ Q))))
(Sup (neg_depth ¢ (expr_pr_conjunct ¢ (iqs ¢ Q))))>
from conjuncts_present have <Vq€Q. (expr_pr_conjunct (¢qs q)) < e’> unfolding e’_def
by (smt (verit, best) SUP_upper energy.sel energy.simps(3) energy_leq_cases image_iff)
with 1qgs_spec weak_spectroscopy_game.win_a_upwards_closure
have clause_win: <VQq€Q. spectro_att_wins e’ (Attacker_Conjunct p q)> by blast
define eu’ where <eu’ = E
(Sup (modal_depth ¢ (expr_pr_conjunct ¢ (¢s ¢ I))))
(Sup (br_conj_depth ¢ (expr_pr_conjunct ¢ (¢s ¢ I))))
(Sup (conj_depth ¢ (expr_pr_conjunct ‘¢ (¢s ¢ I))))
(Sup (st_conj_depth ¢ (expr_pr_conjunct ‘ (¢s ¢ I))))
(Sup (imm_conj_depth ¢ (expr_pr_conjunct ¢ (¢s ¢ I))))
(Sup (pos_conjuncts ¢ (expr_pr_conjunct ¢ (¢s ¢ I))))
(Sup (neg_conjuncts (expr_pr_conjunct ¢ (¢s ¢ I))))
(Sup (neg_depth ‘¢ (expr_pr_conjunct ¢ (¢s ¢ I))))>
have subset_form: <iygs ‘ Q C ¥s ¢ I>
using 1)qs_spec by fastforce
hence <e’ < eu’> unfolding e’_def eu’_def
by (simp add: Sup_subset_mono image_mono)
define e where <e = E
(modal_depth e’)
(br_conj_depth e’)
(conj_depth e’)
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(1 + st_conj_depth e’)
(imm_conj_depth e’)
(pos_conjuncts e’)
(neg_conjuncts e’)
(neg_depth e’)>
have <e’ =e - (E0 00100 0 0)> unfolding e_def e’_def by auto
hence <Some e’ = (subtract_fn 0 0 0 1 0 0 0 0) e>
by (metis e_def energy.sel energy_leq_cases i0_lb le_iff_add)
have expr_lower: <(E 0 00 10 0 0 0) < expr_pr_inner (StableConj I %s)>
using case_assms(1) subset_form by force
have eu’_comp: <eu’ = (expr_pr_inner (StableConj I ¢s)) - (E0 001000 0)>
unfolding eu’_def using energy.sel
by (auto simp add: bot_enat_def, (metis (no_types, lifting) SUP_cong image_image)+)
with expr_lower have eu’_characterization:
<Some eu’ = (subtract_fn 0 0 0 1 0 0 0 0) (expr_pr_inner (StableConj I s))>
by presburger
have <Vg’. spectroscopy_moves (Defender_Stable_Conj p Q) g’ # None
— (3q€Q. (Attacker_Conjunct p q) = g’)
N spectroscopy_moves (Defender_Stable_Conj p Q) g’ = (subtract 0 0 01 0 0 0 0)>
proof clarify
fix g’ upd
assume upd_def: <spectroscopy_moves (Defender_Stable_Conj p Q) g’ = Some upd>
hence <Apx q. g’ = Attacker_Conjunct px q
= p=px Aq € Q A upd = (subtract_fn 0 0 0 1 0 0 0 0)>
by (metis (no_types, lifting) local.conj_s_answer option.discI option.inject)
with upd_def case_assms(1) show
<(dqeQ. Attacker_Conjunct p q = g’)
A spectroscopy_moves (Defender_Stable_Conj p Q) g’ = (subtract 0 0 01 0 0 0 0)>
by (cases g’, auto)
qed
hence <Vg’. spectroscopy_moves (Defender_Stable_Conj p Q) g’ # None
— (de’. (the (spectroscopy_moves (Defender_Stable_Conj p Q) g’)) e = Some e’
A spectro_att_wins e’ g’)>
unfolding e_def
using clause_win <Some e’ = (subtract_fn 0 0 0 1 0 0 0 0) e> e_def by force
hence <spectro_att_wins e (Defender_Stable_Conj p Q) >
unfolding e_def
by (auto simp add: weak_spectroscopy_game.attacker_wins.Defense)
moreover have <e < expr_pr_inner (StableConj I ¥s)>
using <e’ < eu’> eu’_characterization expr_lower case_assms(1l) subset_form
unfolding e_def eu’_comp minus_energy_def leq_components
by (metis add_diff_assoc_enat add_diff_cancel_enat add_left_mono enat.simps(3)
enat_defs(2) energy.sel idiff_O_right)
ultimately show
<spectro_att_wins (expr_pr_inner (StableConj I vs)) (Defender_Stable_Conj p Q)>
using weak_spectroscopy_game.win_a_upwards_closure by blast
qed
moreover have <(Vp Q. Q # {}
— hml_srbb_inner.distinguishes_from (StableConj I ¥s) p Q — Q —»S Q
—> spectro_att_wins (expr_pr_inner (StableConj I s)) (Attacker_Delayed p Q))>
proof clarify
— This is where things are more complicated than in the Conj-case. (We have to differentiate
situations where the stability requirement finishes the distinction.)
fix p Q
assume case_assSms:
<Q # {¥
<hml_srbb_inner.distinguishes_from (StableConj I %)s) p Q>
<Vq’€Q. 3q€Q. q —» q’>
<Vq€eQ. Vq’. 9 » q> — q’ € Q>
define Q’ where <Q’ = { q € Q. (Fq’. q =7 q)}>
with case_assms(2) have Q’_spec:
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<hml_srbb_inner.distinguishes_from (StableConj I %s) p Q’> <hp’’. p =7 p’’>
unfolding hml_srbb_inner.distinguishes_from_def by auto
hence move:
<spectroscopy_moves (Attacker_Delayed p Q) (Defender_Stable_Conj p Q’) = id_up’>
unfolding Q’_def by auto
show <spectro_att_wins (expr_pr_inner (StableConj I ws)) (Attacker_Delayed p Q)>
proof (cases <Q’ = {}>»)
case True
hence
<spectroscopy_moves (Defender_Stable_Conj p Q’) (Defender_Conj p {})
= (subtract 0 0 0 1 0 0 0 0)> by auto
moreover have
<Vg’. spectroscopy_moves (Defender_Stable_Conj p Q’) g’ # None
— g’ = (Defender_Conj p {})>
proof clarify
fix g’ u
assume
<spectroscopy_moves (Defender_Stable_Conj p Q’) g’ = Some u>
with True show <g’ = Defender_Conj p {3}>
by (induct g’, auto, metis option.discI, metis empty_iff option.discI)
qed
ultimately have win_transfer:
<VYe. E00010000¢< e
A spectro_att_wins (e —E 000100 0 0) (Defender_Conj p {})
— spectro_att_wins e (Defender_Stable_Conj p Q’)>
using weak_spectroscopy_game.attacker_wins.Defense
by (smt (verit, ccfv_SIG) option.sel spectroscopy_defender.simps(7))
have <Vg’. spectroscopy_moves (Defender_Conj p {}) g’ = None>

proof

fix g’

show <spectroscopy_moves (Defender_Conj p {}) g’ = None> by (induct g’, auto)
qed

hence <Ve. spectro_att_wins e (Defender_Conj p {1})>
using weak_spectroscopy_game.attacker_wins.Defense by fastforce
moreover have
<Ve. (subtract_fn 0 0 0 1 00 00) e # None — e > (E0 001000 0)>
using minus_energy_def by presburger
ultimately have <Ve. e > (E0 00100 0 0)
— spectro_att_wins e (Defender_Stable_Conj p Q’)>
using win_transfer by presburger
moreover have <expr_pr_inner (StableConj I #s) > (E0 001000 0)>
by auto
ultimately show 7thesis
by (metis move weak_spectroscopy_game.attacker_wins_Ga_with_id_step option.discI
option.sel spectroscopy_defender.simps(4))
next
case False
with move show 7thesis
using main_case Q’_spec weak_spectroscopy_game.attacker_wins_Ga_with_id_step
unfolding Q’_def
by (metis (mono_tags, lifting) mem_Collect_eq option.distinct(1l) option.sel
spectroscopy_defender.simps(4))
qed
qed
ultimately show 7case by blast
next
case (BranchConj a ¢ I v¥s)
have main_case:
<Vp Q p’ Q_c.
hml_srbb_inner.distinguishes_from (BranchConj a ¢ I ¥s) p Q — p —a « p’
— p’ ESRBB ¢ — Q_a = Q - hml_srbb_inner.model_set (Obs a ¢)
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— spectro_att_wins (expr_pr_inner (BranchConj o ¢ I ws))
(Defender_Branch p a p’ (@ - Q_aw) Q_a)>
proof ((rule allI)+, (rule impI)+)
fix p Q p’ QLo
assume case_assms:
<hml_srbb_inner.distinguishes_from (BranchConj a ¢ I 3s) p Q>
<p —~a a p’>
<p’ [=SRBB ¢>
<Q_a = Q - hml_srbb_inner.model_set (Obs « ¢)>
from case_assms(1) have distinctions:
<¥q€(Q N hml_srbb_inner.model_set (Obs «a ¢)).
Ji€I. hml_srbb_conj.distinguishes (¢s i) p q>
using srbb_dist_branch_conjunction_implies_dist_conjunct_or_branch
hml_srbb_inner.distinction_unlifting unfolding hml_srbb_inner.distinguishes_def
by (metis Int_Collect)
hence inductive_wins: <Vq€(Q N hml_srbb_inner.model_set (Obs a ¢)).
3i€I. hml_srbb_conj.distinguishes (¢s i) p q
A spectro_att_wins (expr_pr_conjunct (s i)) (Attacker_Conjunct p q)>
using BranchConj by blast
define 1qs where
<ypgs = Aq. (SOME ¢. Ji€Il. ¢ = ¢s i A hml_srbb_conj.distinguishes 9 p q
A spectro_att_wins (expr_pr_conjunct @) (Attacker_Conjunct p q))>
with inductive_wins somel have 1)gs_spec:
<Vqe(Q N hml_srbb_inner.model_set (Obs « ¢)).
Ji€Il. ¥gs q = ¢s 1 A hml_srbb_conj.distinguishes (¢)gs q ) p q
A spectro_att_wins (expr_pr_conjunct (i)gs q)) (Attacker_Conjunct p q)~>
by (smt (verit))
have conjuncts_present:
<Vq€(Q N hml_srbb_inner.model_set (Obs o ¢)). expr_pr_conjunct (tgs q)
€ expr_pr_conjunct ¢ (¢gs ¢ (Q N hml_srbb_inner.model_set (Obs a ¢)))>
by blast
define e’0 where <e’0 = E
(Sup (modal_depth ¢ (expr_pr_conjunct ¢
(pgs ¢ (Q N hml_srbb_inner.model_set (Obs a ¢))))))
(Sup (br_conj_depth ¢ (expr_pr_conjunct °
(¢pgs ¢ (Q N hml_srbb_inner.model_set (Obs « ¢))))))
(Sup (conj_depth ¢ (expr_pr_conjunct ¢
(pgs ¢ (Q N hml_srbb_inner.model_set (Obs a ©))))))
(Sup (st_conj_depth ¢ (expr_pr_conjunct ¢
(pgs ¢ (Q N hml_srbb_inner.model_set (Obs a ¢))))))
(Sup (imm_conj_depth ¢ (expr_pr_conjunct °
(pqs ¢ (Q N hml_srbb_inner.model_set (Obs «a ¢))))))
(Sup (pos_conjuncts ¢ (expr_pr_conjunct ¢
(pgs ¢ (Q N hml_srbb_inner.model_set (Obs a ©))))))
(Sup (neg_conjuncts ¢ (expr_pr_conjunct ¢
(pgs ¢ (Q N hml_srbb_inner.model_set (Obs a ¢))))))
(Sup (neg_depth ¢ (expr_pr_conjunct ¢
(pgs ¢ (Q N hml_srbb_inner.model_set (Obs a ¢))))))>
from conjuncts_present have branch_answer_bound:
<¥q € Q N hml_srbb_inner.model_set (Obs a ¢). expr_pr_conjunct (ygs q) < e’0>
using e’0_def SUP_upper energy.sel energy.simps(3) energy_leq_cases image_iff
by (smt (z3))
with 1qs_spec weak_spectroscopy_game.win_a_upwards_closure have
conj_wins: <Vq€e(Q N hml_srbb_inner.model_set (0bs a ¢)).
spectro_att_wins e’0 (Attacker_Conjunct p q)> by blast
define eu’0 where <eu’0 = E
(Sup (modal_depth ¢ (expr_pr_conjunct ¢ (¢s ¢ I))))
(Sup (br_conj_depth ¢ (expr_pr_conjunct ¢ (¢¥s ¢ I))))
(Sup (conj_depth ¢ (expr_pr_conjunct ¢ (¢s ¢ I))))
(Sup (st_conj_depth ¢ (expr_pr_conjunct ¢ (¢s ¢ I))))
(Sup (imm_conj_depth ¢ (expr_pr_conjunct ¢ (is ¢ I))))
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<

(Sup (pos_conjuncts ¢ (expr_pr_conjunct ¢ (¢s ¢ I))))
(Sup (neg_conjuncts ¢ (expr_pr_conjunct ¢ (¢s ¢ I))))
(Sup (neg_depth ¢ (expr_pr_conjunct ¢ (¢s ¢ I))))>
have subset_form: <iqgs ¢ (Q N hml_srbb_inner.model_set (Obs a ¢)) C ¥s ¢ I>
using 1)qs_spec by fastforce
hence <e’0 < eu’0> unfolding e’0_def eu’0_def
by (metis (mono_tags, lifting) Sup_subset_mono energy.sel energy_leq_cases image_mono)
have no_qg_way: <Vq€eQ_a. ﬂq’. q — a q’ A hml_srbb_models q’ ¢>
using case_assms(4)
by fastforce
define Q’ where <Q’ = (soft_step_set Q_a a)>
hence <distinguishes_from ¢ p’ Q’>
using case_assms(2,3) no_q_way soft_step_set_is_soft_step_set mem_Collect_eq
unfolding case_assms(4)
by fastforce
with BranchConj have win_a_branch:
<spectro_att_wins (expressiveness_price @) (Attacker_Immediate p’ Q’)>
using distinction_implies_winning_budgets_empty_Q by (cases <Q’ = {}>) auto
have <expr_pr_inner (Obs a ¢) > (E1 000 0 0 0 0)> by auto
hence < (subtract_fn 1 0 0 0 0 0 0 0) (expr_pr_inner (Obs a ¢))
= Some (expressiveness_price ¢)>
using expr_obs_phi by auto
with win_a_branch have win_a_step:
<spectro_att_wins (the ((subtract_fn 1 0 0 0 0 0 0 0) (expr_pr_inner (Obs «a ¢))))
(Attacker_Immediate p’ Q’)> by auto
define e’ where <e’ = E
(Sup (modal_depth ¢ ({expr_pr_inner (Obs « )} U (expr_pr_conjunct ¢ (¢s ¢ I)))))
(Sup (br_conj_depth ¢ ({expr_pr_inner (Obs «a ¢)} U (expr_pr_conjunct ¢ (¢s ¢ I)))))
(Sup (conj_depth ¢ ({expr_pr_inner (Obs a )} U (expr_pr_conjunct ¢ (¢s ¢ 1)))))
(Sup (st_conj_depth ¢ ({expr_pr_inner (Obs « ¢)} U (expr_pr_conjunct ¢ (¢s ¢ I)))))
(Sup (imm_conj_depth ¢ ({expr_pr_inner (Obs a )} U (expr_pr_conjunct ¢ (¢s ¢ I)))))
(Sup ({1 + modal_depth_srbb ¢}
U (pos_conjuncts ‘¢ ({expr_pr_inner (Obs o ¢)} U (expr_pr_conjunct ¢ (¢s ¢ I))))))
(Sup (neg_conjuncts ¢ ({expr_pr_inner (Obs a ¢)} U (expr_pr_conjunct ¢ (¢)s ¢ I)))))
(Sup (neg_depth ¢ ({expr_pr_inner (Obs a ¢)} U (expr_pr_conjunct ¢ (¢s ¢ I)))))>
have <eu’0 < e’> unfolding e’_def eu’0_def
by (auto, meson sup.cobounded2 sup.coboundedI2)
have <spectroscopy_moves (Attacker_Branch p’ Q’) (Attacker_Immediate p’ Q’)
= Some (subtract_fn 1 0 0 0 0 0 0 0)> by simp
with win_a_step weak_spectroscopy_game.attacker_wins.Attack have obs_later_win:
<spectro_att_wins (expr_pr_inner (Obs a ¢)) (Attacker_Branch p’ Q’)>
by force
hence e’_win: <spectro_att_wins e’ (Attacker_Branch p’ Q’)>
unfolding e’_def using weak_spectroscopy_game.win_a_upwards_closure
by auto
have depths: <1 + modal_depth_srbb ¢ = modal_depth (expr_pr_inner (Obs a ¢))> by simp
have six_e’: <pos_conjuncts e’ = Sup ({1 + modal_depth_srbb ¢}
U (pos_conjuncts ¢ ({expr_pr_inner (Obs « ¢)} U (expr_pr_conjunct ¢ (¢¥s ¢ I)))))>
using energy.sel(6) unfolding e’_def by blast
hence six_e’_simp: <pos_conjuncts e’ = Sup ({1 + modal_depth_srbb ¢}
U (pos_conjuncts ¢ (expr_pr_conjunct ¢ (¢¥s ¢ I))))>
by (auto simp add: modal_depth_dominates_pos_conjuncts add_increasing
sup.absorb2 sup.coboundedIl)
hence <pos_conjuncts e’ < modal_depth e’>
unfolding e’_def
by (auto, smt (verit) SUP_mono energy.sel(l) energy.sel(6) image_iff
modal_depth_dominates_pos_conjuncts sup.coboundedI2)
hence <modal_depth (the (minl_6 e’)) = (pos_conjuncts e’)>
by simp
with six_e’ have min_e’_def: <minl_6 e’ = Some (E
(Sup ({1 + modal_depth_srbb ¢} U pos_conjuncts

<

<

4

(expr_pr_conjunct ¢ (¢s ‘ I))))
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(Sup (br_conj_depth ‘¢ ({expr_pr_inner (Obs o ¢)} U (expr_pr_conjunct ¢ (s ¢ I)))))
(Sup (conj_depth ¢ ({expr_pr_inner (Obs o ¢)} U (expr_pr_conjunct ¢ (s ¢ I)))))
(Sup (st_conj_depth ¢ ({expr_pr_inner (Obs o ¢)} U (expr_pr_conjunct ¢ (s ¢ I)))))
(Sup (imm_conj_depth ¢ ({expr_pr_inner (Obs a @)} U (expr_pr_conjunct ¢ (¢s ¢ I)))))
(Sup ({1 + modal_depth_srbb ¢}
U (pos_conjuncts ¢ ({expr_pr_inner (Obs a @)} U (expr_pr_conjunct ¢ (¢s ¢ I))))))
(Sup (neg_conjuncts ‘ ({expr_pr_inner (Obs o ¢)} U (expr_pr_conjunct ¢ (s ¢ I)))))
(Sup (neg_depth ¢ ({expr_pr_inmer (Obs a ¢)} U (expr_pr_conjunct ‘ (¢s ¢ I))))))>
using e’_def minl_6_def six_e’_simp
by (smt (z3) energy.case_eq_if energy.sel min_1_6_simps(1))
hence <expr_pr_inner (Obs o ¢) < the (minl_6 e’)>
by force
hence obs_win: <spectro_att_wins (the (minl_6 e’)) (Attacker_Branch p’ Q’)>
using obs_later_win weak_spectroscopy_game.win_a_upwards_closure by blast
define e where <e = E
(modal_depth e’)
(1 + br_conj_depth e’)
(1 + conj_depth e’)
(st_conj_depth e’)
(imm_conj_depth e’)
(pos_conjuncts e’)
(neg_conjuncts e’)
(neg_depth e’)>
have <e’ =e - (E0 11000 0 0)> unfolding e_def e’_def by auto
hence e’_comp: <Some e’ = (subtract_fn 0 1 1 00 0 0 0) e>
by (metis e_def energy.sel energy_leq_cases i0_lb le_iff_add)
have expr_lower: <(E 01100 0 0 0) < expr_pr_inner (BranchConj o ¢ I s)>
using case_assms subset_form by auto
have e’_minus: <e’ = expr_pr_inner (BranchConj a ¢ I ¢ys) ~E 0110000 0>
unfolding e’_def using energy.sel
by (auto simp add: bot_enat_def sup.left_commute,
(metis (no_types, lifting) SUP_cong image_image)+)
with expr_lower have e’_characterization:
<Some e’ = (subtract_fn 0 1 1 0 0 0 0 0) (expr_pr_inner (BranchConj a ¢ I ¥s))>
by presburger
have moves: <Vg’. spectroscopy_moves (Defender_Branch p a p’ (Q - Q_a) Q_a) g’ # None
— (((Attacker_Branch p’ Q’ = g’)
A (spectroscopy_moves (Defender_Branch p o p’ (Q - Q_a) Q_a) g’
= Some (Ae. Option.bind ((subtract_fn 0 1 1 0 0 0 0 0) e) minl_6)))
V ((3q9e(Q - Q_a). Attacker_Conjunct p q = g’
A spectroscopy_moves (Defender Branch p o p’ (Q - Q_a) Qo) g’
= (subtract 01 1000 0 0))))>
proof clarify
fix g’ u
assume no_subtr_move:
<spectroscopy_moves (Defender_Branch p o p’ (Q - Q_a) Q_a) g’ = Some u>
<= (3q€Q - Q_a. Attacker_Conjunct p q = g’
A spectroscopy_moves (Defender Branch p a p’ (Q - Q_a) Q_a) g’
= subtract 01 1 00 0 0 0)>
hence <g’ = Attacker_Branch p’ Q’>
unfolding Q’_def using soft_step_set_is_soft_step_set no_subtr_move local.br_answer
by (cases g’, auto, (metis (no_types, lifting) option.discI)+)
moreover have <Attacker_Branch p’ Q’ = g’
—> spectroscopy_moves (Defender Branch p o p’ (@ - Q_a) Q_a) g’
= Some (Ae. Option.bind ((subtract_fn 0 1 1 0 0 0 0 0) e) minl_6)>
unfolding Q’_def using soft_step_set_is_soft_step_set by auto
ultimately show <Attacker_Branch p’ Q’ = g’
A spectroscopy_moves (Defender Branch p a p’ (Q - Q_a) Q o) g’
= Some (Ae. Option.bind ((subtract_fn 0 1 1 0 0 0 0 0) e) minl_6)>
by blast
qed

<
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have obs_e:
<Je’. (Ae. Option.bind ((subtract_fn 0 1 1 0 0 0 0 0) e) minl_6) e = Some e’
A spectro_att_wins e’ (Attacker_Branch p’ Q’)>
using obs_win e’_comp min_e’_def
by (smt (verit, best) bind.bind_lunit min_1_6_some option.collapse)
have <Vqe(Q - Q_a).
spectroscopy_moves (Defender Branch p a p’ (Q - Q_a) Q_a) (Attacker_Conjunct p q)
= (subtract 01100 0 0 0)
— spectro_att_wins e’0 (Attacker_Conjunct p q)>
using conj_wins <eu’0 < e’> case_assms(4) by blast
with obs_e moves have move_wins:
<Vg’. spectroscopy_moves (Defender_Branch p a p’ (Q - Q_a) Q_a) g’ # None
— (Je’. (the (spectroscopy_moves (Defender Branch p o p’ (Q - Q_a) Q_a) g’)) e
= Some e’ A spectro_att_wins e’ g’)>
using <eu’0 < e’> e’_comp <e’0 < eu’0> weak_spectroscopy_game.win_a_upwards_closure
by (smt (verit, ccfv_SIG) option.sel)
moreover have <expr_pr_inner (BranchConj a ¢ I 3s) = e>
using e’_characterization e’_minus unfolding e_def by force
ultimately show <spectro_att_wins (expr_pr_inner (BranchConj a ¢ I ¥s))
(Defender_Branch p a p’ (@ - Q_a) Q_a)>
using weak_spectroscopy_game.attacker_wins.Defense spectroscopy_defender.simps(5)
by metis
qed
moreover have
<Vp Q. Q # {} — hml_srbb_inner.distinguishes_from (BranchConj a ¢ I #s) p Q
— spectro_att_wins (expr_pr_inner (BranchConj a ¢ I 1s)) (Attacker_Delayed p Q)>
proof clarify
fix p Q
assume case_assms:
<hml_srbb_inner.distinguishes_from (BranchConj a ¢ I %s) p Q>
from case_assms(1) obtain p’ where p’_spec: <p +—a a p’> <p’ =SRBB ¢>
unfolding hml_srbb_inner.distinguishes_from_def
and distinguishes_def by auto
define Q_a where <Q_a = Q - hml_srbb_inner.model_set (Obs a ¢)>
have <spectro_att_wins (expr_pr_inner (BranchConj a ¢ I s))
(Defender_Branch p a p’ (Q - Q_a) Q_a)>
using main_case case_assms(1) p’_spec Q_a_def by blast
moreover have <spectroscopy_moves (Attacker_Delayed p Q)
(Defender_Branch p a p’ (Q - Q_a) Q_a) = id_up>
using p’_spec Q_a_def by auto
ultimately show
<spectro_att_wins (expr_pr_inner (BranchConj « ¢ I ws)) (Attacker_Delayed p Q)>
using weak_spectroscopy_game.attacker_wins_Ga_with_id_step by auto
gqed
ultimately show 7case by blast
next
case (Pos x)
show 7case
proof clarify
fix p q
assume case_assms: <hml_srbb_conj.distinguishes (Pos x) p g~
then obtain p’ where p’_spec: <p —» p’> <p’ € hml_srbb_inner.model_set x>
unfolding hml_srbb_conj.distinguishes_def by auto
moreover have q_reach: <silent_reachable_set {q} N hml_srbb_inner.model_set x = {}>
using case_assms sreachable_set_is_sreachable
unfolding hml_srbb_conj.distinguishes_def by force
ultimately have distinction:
<hml_srbb_inner.distinguishes_from x p’ (silent_reachable_set {q})>
unfolding hml_srbb_inner.distinguishes_from_def by auto
have q_reach_nonempty:
<silent_reachable_set {q} # {}>
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<silent_reachable_set {q} —»S silent_reachable_set {q} >
unfolding silent_reachable_set_def
using silent_reachable.intros(1l) silent_reachable_trans by auto
hence <spectro_att_wins (expr_pr_inner x)
(Attacker_Delayed p’ (silent_reachable_set {q}))>
using distinction Pos by blast
from p’_spec(l) this have
<spectro_att_wins (expr_pr_inner x) (Attacker_Delayed p (silent_reachable_set {q}))>
by (induct, auto,
metis weak_spectroscopy_game.attacker_wins_Ga_with_id_step procrastination
option.distinct(1) option.sel spectroscopy_defender.simps(4))
moreover have <spectroscopy_moves (Attacker_Conjunct p q)
(Attacker_Delayed p (silent_reachable_set {q})) = Some minl_6>
using q_reach_nonempty sreachable_set_is_sreachable by fastforce
moreover have <the (mini_6 (expr_pr_conjunct (Pos x))) > expr_pr_inner x>
unfolding minl_6_def
by (auto simp add: energy_leq_cases modal_depth_dominates_pos_conjuncts)
ultimately show <spectro_att_wins (expr_pr_conjunct (Pos X)) (Attacker_Conjunct p q)>
using weak_spectroscopy_game.attacker_wins.simps
weak_spectroscopy_game.win_a_upwards_closure spectroscopy_defender.simps(3)
by (metis (no_types, lifting) min_1_6_some option.discI option.exhaust_sel option.sel)

qed

case (Neg x)

show 7case
proof clarify

fix pq
assume case_assms: <hml_srbb_conj.distinguishes (Neg x) p g~
then obtain q’ where q’_spec: <q —» q’> <q’ € hml_srbb_inner.model_set x>
unfolding hml_srbb_conj.distinguishes_def by auto
moreover have p_reach: <silent_reachable_set {p} N hml_srbb_inner.model_set x = {}>
using case_assms sreachable_set_is_sreachable
unfolding hml_srbb_conj.distinguishes_def by force
ultimately have distinction:
<hml_srbb_inner.distinguishes_from x q’ (silent_reachable_set {p})>
unfolding hml_srbb_inner.distinguishes_from_def by auto
have <p # q> using case_assms unfolding hml_srbb_conj.distinguishes_def by auto
have p_reach_nonempty:
<silent_reachable_set {p} # {}>
<silent_reachable_set {p} —»S silent_reachable_set {p}>
unfolding silent_reachable_set_def
using silent_reachable.intros(1l) silent_reachable_trans by auto
hence <spectro_att_wins (expr_pr_inner x)
(Attacker_Delayed q’ (silent_reachable_set {pl}))>
using distinction Neg by blast
from q’_spec(1l) this have
<spectro_att_wins (expr_pr_inner X) (Attacker_Delayed q (silent_reachable_set {pl}))>
by (induct, auto,
metis weak_spectroscopy_game.attacker_wins_Ga_with_id_step procrastination
option.distinct(1) option.sel spectroscopy_defender.simps(4))
moreover have <spectroscopy_moves (Attacker_Conjunct p q)
(Attacker_Delayed q (silent_reachable_set {pl}))
= Some (Ae. Option.bind ((subtract_fn 0 0 0 0 0 0 0 1) e) minl_7)>
using p_reach_nonempty sreachable_set_is_sreachable <p # q> by fastforce
moreover have <the (minl_7 (expr_pr_conjunct (Neg x) —~E 000000 0 1))
> (expr_pr_inner x)>
using minl_7_def energy_leq_cases
by (simp add: modal_depth_dominates_neg_conjuncts)
moreover from this have
<Je’. Some e’ = (Ae. Option.bind ((subtract_fn 0 0 0 0 0 0 0 1) e) minl_7)
(expr_pr_conjunct (Neg x)) A e’ > (expr_pr_inner yx)>
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unfolding min_1_7_subtr_simp by auto
ultimately show <spectro_att_wins (expr_pr_conjunct (Neg x)) (Attacker_Conjunct p q)>
using weak_spectroscopy_game.attacker_wins.Attack
weak_spectroscopy_game.win_a_upwards_closure spectroscopy_defender.simps(3)
by (metis (no_types, lifting) option.discI option.sel)
ged
qed
qed
thus 7thesis
by (metis assms distinction_implies_winning_budgets_empty_Q)
qed

end

end

9.2 Strategy Formulas

theory Strategy_Formulas
imports Spectroscopy_Game Expressiveness_Price
begin

Strategy formulas express attacker strategies in HML. They bridge between HML formulas, the
spectroscopy game and winning budgets. We show that, if some energy e suffices for the attacker
to win, there exists a strategy formula with expressiveness price < e. We also prove that this
formula actually distinguishes the processes of the attacker position.

context lts_tau
begin

inductive
strategy_formula
<(’s, ’a) spectroscopy_position = energy = (’a, ’s) hml_srbb = bool>
and
strategy_formula_inner
<(’s, ’a) spectroscopy_position = energy = (’a, ’s) hml_srbb_inner = bool>
and
strategy_formula_conjunct
<(’s, ’a) spectroscopy_position = energy = (’a, ’s) hml_srbb_conjunct = bool>
where
delay: <strategy_formula (Attacker_Immediate p Q) e (Internal y)>
if <34Q°.

spectroscopy_moves (Attacker_Immediate p Q) (Attacker_Delayed p Q’) = id_up
A spectro_att_wins e (Attacker_Delayed p Q’)
A strategy_formula_inner (Attacker_Delayed p Q’) e x>
|
procrastination: <strategy_formula_inner (Attacker_Delayed p Q) e x>
if <dp’.
spectroscopy_moves (Attacker_Delayed p Q) (Attacker_Delayed p’ Q) = id_up

A spectro_att_wins e (Attacker_Delayed p’ Q)
A strategy_formula_inner (Attacker_Delayed p’ Q) e x>

observation: <strategy_formula_inner (Attacker_Delayed p Q) e (Obs a ¢)>
if <dp’ Q’. spectroscopy_moves (Attacker_Delayed p Q) (Attacker_Immediate p’ Q’)
= (subtract 1 0 0 000 0 0)
A spectro_att_wins (e -~ E 1 000 0 0 0 0) (Attacker_Immediate p’ Q’)
A strategy_formula (Attacker_Immediate p’ Q’) (e ~E 10000000 ¢
AN praa p’ ANQ—aS a Q>

early_conj: <strategy_formula (Attacker_Immediate p Q) e >
if <dp’. spectroscopy_moves (Attacker_Immediate p Q) (Defender_Conj p’ Q’)
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= (subtract 0 0 0 01 0 0 0)
A spectro_att_wins (e —~E 0000 10 0 0) (Defender_Conj p’ Q’)
A strategy_formula (Defender_Conj p’ Q’) (¢ —E 0000100 0) >

late_conj: <strategy_formula_inner (Attacker_Delayed p Q) e x>
if < (spectroscopy_moves (Attacker_Delayed p Q) (Defender_Conj p Q)
= id_up A (spectro_att_wins e (Defender_Conj p Q))
A strategy_formula_inner (Defender_Conj p Q) e x)>

conj: <strategy_formula_inner (Defender_Conj p Q) e (Conj Q ®)>
if <Vq € Q. spectroscopy_moves (Defender_Conj p Q) (Attacker_Conjunct p q)
= (subtract 001 00 0 0 0)
A (spectro_att_wins (e - (E0 010 0 0 0 0)) (Attacker_Conjunct p q))
A strategy_formula_conjunct (Attacker_Conjunct pq) (e ~E00100000) (P q)>

imm_conj: <strategy_formula (Defender_Conj p Q) e (ImmConj Q ®)>
if <Vq € Q. spectroscopy_moves (Defender_Conj p Q) (Attacker_Conjunct p q)
= (subtract 001 0 0 0 0 0)
A (spectro_att_wins (e - (E0 0 10 0 0 0 0)) (Attacker_Conjunct p q))
A strategy_formula_conjunct (Attacker_Conjunct pq) (e ~E00100000) (P qg)>

pos: <strategy_formula_conjunct (Attacker_Conjunct p q) e (Pos x)>
if <(3Q’. spectroscopy_moves (Attacker_Conjunct p q) (Attacker_Delayed p Q’)
= Some minl_6 A spectro_att_wins (the (minl_6 e)) (Attacker_Delayed p Q’)
A strategy_formula_inner (Attacker_Delayed p Q’) (the (minl_6 e)) x)>

neg: <strategy_formula_conjunct (Attacker_Conjunct p q) e (Neg x)>
if <JP’. (spectroscopy_moves (Attacker_Conjunct p q) (Attacker_Delayed q P’)
= Some (Me. Option.bind ((subtract_fn 0 0 0 0 0 0 0 1) e) minl_7)
N spectro_att_wins (the (minl 7 (¢ —~E 0000 0 0 0 1))) (Attacker_Delayed q P’))
A strategy_formula_inner (Attacker_Delayed q P’)
(the (min1_7 (¢ ~E 0000000 1)) x>

stable: <strategy_formula_inner (Attacker_Delayed p Q) e x>
if <(3Q’. spectroscopy_moves (Attacker_Delayed p Q) (Defender_Stable_Conj p Q’)
= id_up A spectro_att_wins e (Defender_Stable_Conj p Q’)
N strategy_formula_inner (Defender_Stable_Conj p Q’) e x)>

stable_conj: <strategy_formula_inner (Defender_Stable_Conj p Q) e (StableConj Q P)>
if <Vq € Q. spectroscopy_moves (Defender_Stable_Conj p Q) (Attacker_Conjunct p q)
= (subtract 0 0 0 1 0 0 0 0)
A spectro_att_wins (e - (E0 00 10 0 0 0)) (Attacker_Conjunct p q)
N strategy_formula_conjunct (Attacker_Conjunct p q) (¢ ~E00010000) (P qg)>

branch: <strategy_formula_inner (Attacker_Delayed p Q) e x>
if <dp’ Q° o Qu. spectroscopy_moves (Attacker_Delayed p Q)
(Defender _Branch p a p’ Q’ Qo) = id_up
A spectro_att_wins e (Defender Branch p a p’ Q’ Qa)
A strategy_formula_inner (Defender_Branch p a p’ Q’ Qu) e x>

branch_conj:
<strategy_formula_inner (Defender_Branch p a p’ Q Qa) e (BranchConj a ¢ Q ®)>
if <3Q’. spectroscopy_moves (Defender_Branch p o p’ Q Qo) (Attacker_Branch p’ Q’)
= Some (Ae. Option.bind ((subtract_fn 0 1 1 0 0 0 0 0) e) minl_6)

A spectroscopy_moves (Attacker_Branch p’ Q’) (Attacker_Immediate p’ Q’)

= subtract 1 0 0 0 0000

A (spectro_att_wins (the (min1 6 (¢ ~-E01100000) -E10000000O0)
(Attacker_Immediate p’ Q’))

A strategy_formula (Attacker_Immediate p’ Q’)

(the (min1 6 (¢ ~E01100000) -E10000000) >
<Vq € Q. spectroscopy_moves (Defender_Branch p a p’ Q Qa) (Attacker_Conjunct p q)
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(subtract 01 1 000 0 0)
spectro_att_wins (e - (EO0 1100 0 0 0)) (Attacker_Conjunct p q)
strategy_formula_conjunct (Attacker_Conjunct p q) (¢ ~E0 1100000 (P q)>

A
A

lemma winning_budget_implies_strategy_formula:
assumes
<spectro_att_wins e g>
shows
<case g of
Attacker_Immediate p Q = Jdp. strategy_formula g e ¢ A expressiveness_price ¢ < e
| Attacker_Delayed p Q = dx. strategy_formula_inner g e x A expr_pr_inner x < e
| Attacker_Conjunct p q =
J1. strategy_formula_conjunct g e ¥ A expr_pr_conjunct 9 < e
| Defender_Conj p Q = Jx. strategy_formula_inner g e x A expr_pr_inner x < e
| Defender_Stable_Conj p Q = Jx. strategy_formula_inner g e x A expr_pr_inner xy < e
| Defender_Branch p a p’ Q Qa =
Jx. strategy_formula_inner g e x A expr_pr_inner x < e
| Attacker_Branch p Q =
Jp. strategy_formula (Attacker_Immediate p Q) (¢ —E 1000000 0) ¢
N expressiveness_price ¢ < e -E 1000000 0>
using assms
proof (induction rule: weak_spectroscopy_game.attacker_wins.induct)
case (Attack g g’ e e’)
then show 7case
proof (induct g)
case (Attacker_Immediate p Q)
hence move: <
(dp Q. g’ = Defender_Conj p Q) —
(3¢. strategy_formula_inner g’ (the (weak_spectroscopy_game.weight g g’ e)) ¢
A expr_pr_inner ¢ < weak_spectroscopy_game.updated g g’ e) A
(dp Q. g’ = Attacker_Delayed p Q) —
(3¢. strategy_formula_inner g’ (the (weak_spectroscopy_game.weight g g’ e)) ¢

A expr_pr_inner ¢ < weak_spectroscopy_game.updated g g’ e)>

using weak_spectroscopy_game.attacker_wins.cases
by simp
from move Attacker_Immediate have move_cases:
<(3p’ Q’. g’ = (Attacker_Delayed p’ Q’)) V (I p’ Q’. g’ = (Defender_Conj p’ Q’))>
using spectroscopy_moves.simps
by (smt (verit, del_insts) spectroscopy_defender.elims(2,3))
show ?case using move_cases
proof (rule disjE)
assume <3Jp’ Q’. g’ = Attacker_Delayed p’ Q’>
then obtain p’ Q’ where g’_att_del: <g’ = Attacker_Delayed p’ Q’> by blast
have e_comp:
<the (spectroscopy_moves (Attacker_Immediate p Q) (Attacker_Delayed p’ Q’)) e
= Some e>
by (smt (verit, ccfv_threshold) Spectroscopy_Game.lts_tau.delay g’_att_del
Attacker_Immediate move option.exhaust_sel option.inject)
have <p’ = p>
by (metis g’_att_del Attacker_Immediate(2) spectroscopy_moves.simps(1))
moreover have < (spectro_att_wins e (Attacker_Delayed p Q’))>
using <g’ = Attacker_Delayed p’ Q’> <p’ = p> Attacker_Immediate
weak_spectroscopy_game.win_a_upwards_closure e_comp
by simp
ultimately have < (Jy.
strategy_formula_inner g’

(the (weak_spectroscopy_game.weight (Attacker_Immediate p Q) g’ e)) x A
expr_pr_inner x < weak_spectroscopy_game.updated (Attacker_Immediate p Q) g’ e)>
using g’_att_del Attacker_Immediate by fastforce

then obtain x where
< (strategy_formula_inner (Attacker_Delayed p Q’) e x A expr_pr_inner x < e)>
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using <p’ = p> e_comp g’_att_del by auto
hence <JQ’. spectroscopy_moves (Attacker_Immediate p Q) (Attacker_Delayed p Q’) = id_up
A (spectro_att_wins e (Attacker_Delayed p Q’))
N strategy_formula_inner (Attacker_Delayed p Q’) e x>
using g’_att_del
by (smt (verit) Spectroscopy_Game.lts_tau.delay
<spectro_att_wins e (Attacker_Delayed p Q’)> Attacker_Immediate)
hence <strategy_formula (Attacker_Immediate p Q) e (Intermal x)>~>
using strategy_formula_strategy_formula_inner_strategy_formula_conjunct.delay by blast
moreover have <expressiveness_price (Intermal y) < e>
using < (strategy_formula_inner (Attacker_Delayed p Q’) e x A expr_pr_inner x < e)>
by auto
ultimately show 7case by auto
next
assume <dp’ Q’. g’ = Defender_Conj p’ Q’>
then obtain p’ Q’ where g’_def_conj: <g’ = Defender_Conj p’ Q’> by blast
hence M: <spectroscopy_moves (Attacker_Immediate p Q) (Defender_Conj p’ Q’)
= (subtract 0 0 00100 0)>
using local.f_or_early_conj Attacker_Immediate by presburger
hence Qp’: <Q#{}> <Q =Q’> <p =p’>
using Attack.hyps(2) Attacker_Immediate g’_def_conj local.f_or_early_conj by metis+
from M have M’:
<weak_spectroscopy_game.updated (Attacker_Immediate p Q) (Defender_Conj p’ Q’) e
=e-(E00001000)
using Attack.hyps(3) g’_def_conj Attacker_Immediate
by (smt (verit) option.distinct(1l) option.sel)
hence M’’: < (spectro_att_wins (e - (E0 00O 10 0 0)) (Defender_Conj p Q’))>
using g’_def_conj Qp’ Attacker_Immediate weak_spectroscopy_game.win_a_upwards_closure
by force
with g’_def_conj have IH_case: <dy.
strategy_formula_inner g’
(weak_spectroscopy_game.updated (Attacker_Immediate p Q) g’ e) x
A expr_pr_inner x < weak_spectroscopy_game.updated (Attacker_Immediate p Q) g’ e>
using Attacker_Immediate by auto
hence <dx. strategy_formula_inner (Defender_Conj p Q) (¢ ~E0 000100 0) x
A expr_pr_imnner x < (¢ ~-E00001000)»
using <spectro_att_wins (e - (EO0 0 0010 0 0)) (Defender_Conj p Q’)> IH_case
Qp’ M’ g’_def_conj by auto
then obtain ) where S:
<strategy_formula_inner (Defender Conj p Q) (¢ ~-E 0000100 0) x
A expr_pr_inmmer x < e-EO00001000>
by blast
hence <dt¢. x = Conj Q ¥>
using strategy_formula_strategy_formula_inner_strategy_formula_conjunct.conj
g’_def_conj Attacker_Immediate
unfolding Qp’
by (smt (verit) spectroscopy_moves.simps(64,70) spectroscopy_position.distinct(17)
spectroscopy_position.inject(5) strategy_formula_inner.cases)
then obtain 9 where <x = Conj Q ¥> by auto
hence <strategy_formula (Defender _Conj p Q) (e - (E0 00010 0 0)) (ImmConj Q ¥)>
using S strategy_formula_strategy_formula_inner_strategy_formula_conjunct.conj
strategy_formula_strategy_formula_inner_strategy_formula_conjunct.imm_conj
Qp’ Attacker_Immediate unfolding g’_def_conj
by (smt (verit) lts_tau.spectroscopy_moves.simps(70) hml_srbb_inner.inject(2)
spectroscopy_position.distinct(17,37) strategy_formula_inner.cases)
hence SI: <strategy_formula (Attacker_Immediate p Q) e (ImmConj Q %) >
using delay early_conj Qp’
by (metis (no_types, lifting) M’’ local.f_or_early_conj)
have <expr_pr_inner (Conj Q ) < (e - (E00001000))>
using S <x = Conj Q ¥> by simp
hence <expressiveness_price (ImmConj Q ) < e> using expr_imm_conj Qp’
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by (smt (verit) M g’_def_conj Attacker_Immediate option.sel option.simps(3))
thus ?thesis using SI by auto
qed
next
case (Attacker_Branch p Q)
hence g’_def: <g’ = Attacker_Immediate p Q> using br_acct
by (induct g’, auto) (metis option.discI)+
hence move:
<spectroscopy_moves (Attacker_Branch p Q) g’ = subtract 1 0 0 0 0 0 0 0> by simp
then obtain ¢ where
<strategy_formula g’ (weak_spectroscopy_game.updated (Attacker_Branch p Q) g’ e) ¢ A
expressiveness_price ¢ < weak_spectroscopy_game.updated (Attacker_Branch p Q) g’ e>
using Attacker_Branch g’_def by auto
hence < (strategy_formula (Attacker_Immediate p Q) (e —E 100000 0 0) )
N expressiveness_price ¢ < e -E 1000000 0>
using move Attacker_Branch unfolding g’_def
by (smt (verit, del_insts) option.distinct(1l) option.sel)
then show 7case by auto
next
case (Attacker_Conjunct p q)
hence <(dp’ Q’. g’ = (Attacker_Delayed p’ Q’))>
using Attack.hyps spectroscopy_moves.simps
by (smt (verit, del_insts) spectroscopy_defender.elims(1))
then obtain p’ Q’ where
g’_att_del: <g’ = Attacker_Delayed p’ Q’> by blast
show 7case
proof(cases <p = p’>)
case True
hence <{q} —»S Q’>
using g’_att_del local.pos_neg_clause Attacker_Conjunct by presburger
hence post_win:
< (the (spectroscopy_moves (Attacker_Conjunct p q) g’) e) = minl 6 e>
< (spectro_att_wins (the (mini_6 e)) (Attacker_Delayed p Q’))>
using <{q} —S Q’> Attacker_Conjunct weak_spectroscopy_game.win_a_upwards_closure
unfolding True g’_att_del
by auto
then obtain ) where x_spec:
<strategy_formula_inner (Attacker_Delayed p Q’) (the (minl_6 e)) x>
<expr_pr_inner x < the (minl_6 e)>
using Attacker_Conjunct Attack True post_win unfolding g’_att_del
by (smt (verit) option.sel spectroscopy_position.simps(51))
hence
<spectroscopy_moves (Attacker_Conjunct p q) (Attacker_Delayed p Q’) = Some minl_6>
<spectro_att_wins (the (minl_6 e)) (Attacker_Delayed p Q’)>
<strategy_formula_inner (Attacker_Delayed p Q’) (the (minl_6 e)) x>
using <{q} —S Q’> local.pos_neg_clause post_win by auto
hence <strategy_formula_conjunct (Attacker_Conjunct p q) e (Pos x)>
using strategy_formula_strategy_formula_inner_strategy_formula_conjunct.delay pos
by blast
thus ?7thesis
using x_spec expr_pos by fastforce
next
case False
hence Qp’: <{p} —»S Q’> <p’ = >
using local.pos_neg_clause Attacker_Conjunct unfolding g’_att_del
by presburger+
hence move: <spectroscopy_moves (Attacker_Conjunct p q) (Attacker_Delayed p’ Q’)
= Some (Ae. Option.bind ((subtract_fn 0 0 0 0 0 0 0 1) e) minl_7)>
using False by auto

hence win:
<spectro_att_wins (the (minl 7 (¢ ~E 0000 0 0 0 1))) (Attacker_Delayed p’ Q’)>
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using Attacker_Conjunct unfolding g’_att_del
by (smt (verit) bind.bind_lunit bind.bind_lzero option.distinct(1l) option.sel)
hence <Jdp. strategy_formula_inner (Attacker_Delayed p’ Q’)
(the (min1_ 7 (¢ ~E0000000 1)) ¢
A expr_pr_inner ¢ < the (minl 7 (¢ ~E 0000000 1))>
using Attack Attacker_Conjunct move unfolding g’_att_del
by (smt (verit, del_insts) bind.bind_lunit bind_eq_None_conv option.discI
option.sel spectroscopy_position.simps(51))
then obtain ) where Xx_spec:
<strategy_formula_inner (Attacker_Delayed p’ Q’)
(the (min1 7 (¢ ~E0 000000 1))) x>
<expr_pr_inner x < the (minl 7 (¢ ~-E0O0O0O0O0O0O0 1))>
by blast
hence <strategy_formula_conjunct (Attacker_Conjunct p q) e (Neg x)>
using strategy_formula_strategy_formula_inner_strategy_formula_conjunct.delay
neg (Qp’ win move by blast
thus ?thesis
using x_spec Attacker_Conjunct expr_neg move
unfolding g’_att_del
by (smt (verit, best) bind.bind_lunit bind_eq_None_conv option.distinct(1)
option.sel spectroscopy_position.simps(52))
qed
next
case (Attacker_Delayed p Q)
then consider
(Att_Del) <dp Q. g’ = Attacker_Delayed p Q> |
(Att_Imm) <3Jp’ Q’. g’ = Attacker_Immediate p’ Q’> |
(Def_Conj) <dp Q. g’ = Defender_Conj p Q> |
(Def_St_Conj) <dJp Q. g’ = Defender_Stable_Conj p Q> |
(Def _Branch) <dp’ a p’’ Q’ Qo. g’ = Defender_Branch p’ a p’’ Q’ Qa>
by (cases g’, auto)
then show ?7case
proof (cases)
case Att_Del
then obtain p’ Q’ where
g’_att_del: <g’ = Attacker_Delayed p’ Q’> by blast
have Qp’: <Q’ = Q> <p # p’> <p+— T p’>
using Attacker_Delayed g’_att_del Spectroscopy_Game.lts_tau.procrastination
by metis+
hence e_comp: < (the (spectroscopy_moves (Attacker_Delayed p Q) g’) e) = Some e>
using g’_att_del
by simp
hence att_win: < (spectro_att_wins e (Attacker_Delayed p’ Q’))>
using g’_att_del Qp’ Attacker_Delayed weak_spectroscopy_game.attacker_wins.Defense e_comp
by (metis option.sel)
have < (weak_spectroscopy_game.updated (Attacker_Delayed p Q) g’ e) = e>
using g’_att_del Attacker_Delayed e_comp by fastforce
then obtain ) where x_spec:
<strategy_formula_inner (Attacker_Delayed p’ Q’) e x A expr_pr_inner x < e>
using Attacker_Delayed g’_att_del by auto
hence <dp’. spectroscopy_moves (Attacker_Delayed p Q) (Attacker_Delayed p’ Q) = id_up
A spectro_att_wins e (Attacker_Delayed p’ Q)
A strategy_formula_inner (Attacker_Delayed p’ Q) e x>
using e_comp g’_att_del Qp’ local.procrastination Attack.hyps att_win
Spectroscopy_Game.lts_tau.procrastination
by metis
hence <strategy_formula_inner (Attacker_Delayed p Q) e x>
using procrastination by blast
moreover have <expr_pr_inmer x < e>
using x_spec by blast
ultimately show 7thesis by auto
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next
case Att_Imm
then obtain p’ Q’ where
g’_att_imm: <g’ = Attacker_Immediate p’ Q’> by blast
hence move: <spectroscopy_moves (Attacker_Delayed p Q) (Attacker_Immediate p’ Q’) # None>
using Attacker_Delayed by blast
hence <da. p +—ra a p’ A Q —aS a Q’> unfolding spectroscopy_moves.simps(3) by presburger
then obtain « where a_prop: <p —a a p’> <Q —aS « Q’> by blast
moreover then have weight:
<spectroscopy_moves (Attacker_Delayed p Q) (Attacker_Immediate p’ Q’)
= subtract 1 0 0 0 0 0 0 0>
by (simp, metis)
moreover then have update:
<weak_spectroscopy_game.updated (Attacker_Delayed p Q) g’ e
=e-(E10000000)»
using g’_att_imm Attacker_Delayed
by (smt (verit, del_insts) option.distinct(1l) option.sel)
moreover then obtain ) where x_prop:
<strategy_formula (Attacker_Immediate p’ Q’) (¢ —~E 1000000 0) x>
<expressiveness_price x < e-E 1000000 0>
using Attacker_Delayed g’_att_imm
by auto
moreover have <spectro_att_wins (e - (E1 00 0 0 0 0 0)) (Attacker_Immediate p’ Q’)>
using weak_spectroscopy_game.attacker_wins.Attack Attack.hyps(4)
Attacker_Delayed.prems(3) calculation(4) g’_att_imm
by force
ultimately have <strategy_formula_inner (Attacker_Delayed p Q) e (Obs a x)>
using local.observation[of p Q e x a] by blast
moreover have <expr_pr_inner (Obs a x) < e>
using expr_obs x_prop Attacker_Delayed g’_att_imm weight update
by (smt (verit) option.sel)
ultimately show 7thesis by auto
next
case Def_Conj
then obtain p’ Q’ where
g’ _def_conj: <g’ = Defender_Conj p’ Q’> by blast
hence <p =p’> <Q =Q’>
using local.late_inst_conj Attacker_Delayed by presburger+
hence
<the (spectroscopy_moves (Attacker_Delayed p Q) (Defender_Conj p’ Q’)) e = Some e>
by fastforce
hence
<spectro_att_wins e (Defender_Conj p’ Q’)>
<weak_spectroscopy_game.updated g g’ e = e>
using Attacker_Delayed Attack unfolding g’_def_conj by simp+
then obtain ) where
X_prop: <strategy_formula_inner (Defender_Conj p’ Q’) e x A expr_pr_inner x < e>
using Attack g’_def_conj by auto
hence
<spectroscopy_moves (Attacker_Delayed p Q) (Defender_Conj p’ Q’) = id_up
A spectro_att_wins e (Defender_Conj p’ Q’)
N strategy_formula_inner (Defender_Conj p’ Q’) e x>
by (simp add: <Q = Q’> <spectro_att_wins e (Defender_Conj p’ Q’)> <p = p’>)
then show 7thesis
using x_prop <Q = Q’> <spectro_att_wins e (Defender_Conj p’ Q’)> <p = p’> late_conj
by fastforce
next
case Def_St_Conj
then obtain p’ Q’ where g’_def: <g’ = Defender_Stable_Conj p’ Q’> by blast
hence pQ’: <p =p’> <Q’ ={qe Q. (Fqg’. q =7 q)}> <Fp’’. p 7 p’?>
using local.late_stbl_conj Attacker_Delayed
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by meson+
hence <the (spectroscopy_moves (Attacker_Delayed p Q) (Defender_Stable_Conj p’ Q’)) e
= Some e>
by auto
hence <spectro_att_wins e (Defender_Stable_Conj p’ Q’)>
<weak_spectroscopy_game.updated g g’ e = e>
using Attacker_Delayed Attack unfolding g’_def by force+
then obtain x where x_prop:
<strategy_formula_inner (Defender_Stable_Conj p’ Q’) e x> <expr_pr_inner x < e>
using Attack g’_def by auto
have <spectroscopy_moves (Attacker_Delayed p Q) (Defender_Stable_Conj p’ Q’) = id_up
A spectro_att_wins e (Defender_Stable_Conj p’ Q’)
N strategy_formula_inner (Defender_Stable_Conj p’ Q’) e x>
using Attack y_prop <spectro_att_wins e (Defender_Stable_Conj p’ Q’)> late_stbl_conj
pQ’ g’ _def
by force
thus ?7thesis using local.stablelof p Q e x] pQ’ x_prop by fastforce
next
case Def_Branch
then obtain p’ a p’’ Q’ Qo where
g’_def_br: <g’ = Defender_Branch p’ « p’’ Q’ Qu> by blast
hence pQ’: <p =p’> <Q’ =Q - Q> <p —a a p’’> <Qa C Q>
using br_conj Attacker_Delayed by metis+
hence
<the (spectroscopy_moves (Attacker_Delayed p Q) (Defender_ Branch p’ a p’’ Q’ Qa)) e
= Some e>
by auto
hence post:
<spectro_att_wins e (Defender_Branch p’ a p’’ Q’ Qa)>
<weak_spectroscopy_game.updated g g’ e = e>
using Attack option.inject Attacker_Delayed unfolding g’_def_br by auto
then obtain x where x_prop:
<strategy_formula_inner (Defender_Branch p’ « p’’ Q’ Qa) e x>
<expr_pr_inner x < e>
using g’_def_br Attack Attacker_Delayed
by auto
hence <spectroscopy_moves (Attacker_Delayed p Q) (Defender_Branch p a p’’ Q’ Qa) = id_up
A spectro_att_wins e (Defender_Branch p a p’’ Q’ Qa)
A strategy_formula_inner (Defender_Branch p a p’’ Q’ Qa) e x>
using g’_def_br local.branch Attack post pQ’ by simp
hence <strategy_formula_inner (Attacker_Delayed p Q) e x>
using Attack Attacker_Delayed local.br_conj branch
unfolding g’_def_br by fastforce
thus ?thesis using x_prop
by fastforce
qed
qged force+
next
case (Defense g e)
thus 7case
proof (induct g)
case (Defender_Branch p a p’ Q Qa)
hence conjs:
<Vq€ Q. spectroscopy_moves (Defender_Branch p o p’ Q Qa) (Attacker_Conjunct p q)
= subtract 0 11000 0 0>
by simp
obtain e’ where e’_spec:
<V q€Q. weak_spectroscopy_game.weight (Defender_Branch p a p’ Q Qa)
(Attacker_Conjunct p q) e = Some e’
A spectro_att_wins e’ (Attacker_Conjunct p q)
A (9. strategy_formula_conjunct (Attacker_Conjunct p q) e’ %
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A expr_pr_conjunct ¢ < e’)>
using conjs Defender_Branch option.distinct(1l) option.sel
by (smt (z3) spectroscopy_position.simps(52))
hence e’_def: <Q # {} = e’ =e-EO0110000 0> using conjs
by (smt (verit) all_not_in_conv option.distinct(1) option.sel)
then obtain & where P_spec:
<Vq € Q. strategy_formula_conjunct (Attacker_Conjunct p q) e’ (P q)
A expr_pr_conjunct (& q) < e’>
using e’_spec by metis
have obs: <spectroscopy_moves (Defender_Branch p a p’ Q Qa)
(Attacker_Branch p’ (soft_step_set Qa a))
= Some (Ae. Option.bind ((subtract_fn 0 1 1 0 0 0 0 0) e) minl_6)>
by (simp add: soft_step_set_is_soft_step_set)
have <Vp Q. Attacker_Branch p’ (soft_step_set Qa a) = Attacker_Branch p Q
— p =p’ N Q = soft_step_set Qa o> by blast
with option.discI[OF obs] obtain e’’ where
<dg. strategy_formula (Attacker_Immediate p’ (soft_step_set Qa a))
(e’? -E10000000) ¢
N expressiveness_price p < e’ -E 1000000 0>
using Defense.IH option.distinct(1) option.sel
by (smt (verit, best) Defender_Branch.prems(2) spectroscopy_position.simps(53))
then obtain ¢ where
<strategy_formula (Attacker_Immediate p’ (soft_step_set Qa a))
(weak_spectroscopy_game.updated (Defender_Branch p a p’ Q Qa)
(Attacker_Branch p’ (soft_step_set Qa )) e —-E 1000000 0) ¢>
<expressiveness_price ¢
< weak_spectroscopy_game.updated (Defender_Branch p a p
(Attacker_Branch p’ (soft_step_set Qa a)) e - E 1 0
using Defender_Branch.prems(2) option.discI[OF obs]
by (smt (verit, best) option.sel spectroscopy_position.simps(53))
hence obs_strat:
<strategy_formula (Attacker_Immediate p’ (soft_step_set Qa «))

(the (min1_ 6 (¢ ~E01100000)) -E10000000) >
<expressiveness_price ¢ < (the (min1 6 (¢ ~-E01100000)) -E10000000)>
by (smt (verit, best) Defender_Branch.prems(2) bind.bind_lunit bind.bind_lzero obs

option.distinct(1l) option.sel)+

have <spectroscopy_moves (Attacker_Branch p’ (soft_step_set Qa «))
(Attacker_Immediate p’ (soft_step_set Qa a))
= (subtract 1 0 0 0 0 0 0 0)> by simp
obtain e’’ where win_branch:
<Some e’’ =minl 6 (¢ ~E01100000)>
<spectro_att_wins e’’ (Attacker_Branch p’ (soft_step_set Qa a))>
using Defender_Branch
by (smt (verit, ccfv_threshold) bind.bind_lunit bind_eq_None_conv obs
option.discI option.sel)
then obtain g’’ where g’’_spec:
<spectroscopy_moves (Attacker_Branch p’ (soft_step_set Qa «a)) g’’ # None>
<spectro_att_wins (weak_spectroscopy_game.updated
(Attacker_Branch p’ (soft_step_set Qa a)) g’’ (the (minl 6 (¢ ~-E 0110000 0))))
g77>
using weak_spectroscopy_game.attacker_wins.cases
by (metis spectroscopy_defender.simps(2) option.sel)
hence move_immediate:
<g’’ = (Attacker_Immediate p’ (soft_step_set Qa «))
N spectroscopy_moves (Attacker_Branch p’ (soft_step_set Qa «a))

(Attacker_Immediate p’ (soft_step_set Qa «)) = subtract 1 0 0 0 0 0 0 0>
using br_acct
by (cases g’’, auto) (metis option.discI)+

then obtain e’’’ where win_immediate:
<Some e’’’ = subtract_ fn 1 0 0 0 0 0 0 0 e’’>
<spectro_att_wins e’’’ (Attacker_Immediate p’ (soft_step_set Qa a))>

J

Q Qa)
00000 0>
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using g’’_spec win_branch option.distinct(1l) option.sel spectroscopy_defender.elims(1)
spectroscopy_defender.simps(2)
weak_spectroscopy_game.attacker_wins.cases[0F win_branch(2)]
by (smt (verit, del_insts) local.br_acct spectroscopy_moves.simps(23,53,57,61,66,72))
hence strat:
<strategy_formula_inner (Defender Branch p a p’ Q Qa) e (BranchConj a ¢ Q ®)>
using branch_conj obs move_immediate obs_strat ®_spec conjs e’_def e’_spec
by (smt (verit, best) option.distinct(l) option.sel win_branch(1))
have <E1 0000000 < e’’> using win_branch g’’_spec
by (metis option.distinct(l) win_immediate(1))
hence above_one: <0 < min (modal_depth e) (pos_conjuncts e)>
using win_immediate win_branch
by (metis energy.sel(l) energy.sel(6) gr_zerol idiff_O_right leq_components
min_1_6_simps(1) minus_energy_def not_one_le_zero option.sel)
have <Vq € Q. expr_pr_conjunct (¢ q) < (e - (E01100000))>
using ®_spec e’_def by blast
moreover have <expressiveness_price ¢
< the (min1 6 (¢ ~E01100000) -E1000000 0>
using obs_strat(2) by blast
moreover hence <modal_depth_srbb ¢ < min (modal_depth e) (pos_conjuncts e) - 1>
by simp
hence <1 + modal_depth_srbb ¢ < min (modal_depth e) (pos_conjuncts e)>
by (metis above_one add.right_neutral add_diff_cancel_enat
add_mono_thms_linordered_semiring(1l) enat.simps(3) enat_defs(2) ilell
le_iff_add plus_1_eSuc(1))
moreover hence <1 + modal_depth_srbb ¢ < pos_conjuncts e> by simp
ultimately have <expr_pr_inner (BranchConj a ¢ Q ®) < e>
using expr_br_conj e’_def obs Defender_Branch(2) win_branch(1l) win_immediate(1)
by (smt (verit, best) bind_eq_None_conv option.distinct(1l) option.sel option.simps(3))
then show 7case using strat by force
next
case (Defender_Conj p Q)
hence moves:
<Vg’. spectroscopy_moves (Defender_Conj p Q) g’ # None
— (Je’. weak_spectroscopy_game.weight (Defender_Conj p Q) g’ e = Some e’
A spectro_att_wins e’ g’)
A (dq. g’ = (Attacker_Conjunct p q))>
using local.conj_answer
1lts_tau.spectroscopy_defender.elims spectroscopy_moves.simps(30,33,34,47,58,62)
by (smt (verit, best))
show 7case
proof (cases <Q = {}>)
case True
then obtain ® where <Vq € Q.
spectroscopy_moves (Defender_Conj p Q) (Attacker_Conjunct p q)
= subtract 0 01 00000
A spectro_att_wins (¢ - (E0 0100 0 0 0)) (Attacker_Conjunct p q)
A strategy_formula_conjunct (Attacker_Conjunct p q) (¢ ~E00100000) (P q)>
by (auto simp add: emptyE)
hence Strat: <strategy_formula_inner (Defender_Conj p Q) e (Conj {} ®)>
using <Q = {}> conj by blast
hence
<modal_depth_srbb_inner (Conj Q ®) = Sup ((modal_depth_srbb_conjunct o ®) ¢ Q)>
<branch_conj_depth_inner (Conj Q ®) = Sup ((branch_conj_depth_conjunct o ®) ¢ Q)>
<inst_conj_depth_inner (Conj Q ®) = 0>
<st_conj_depth_inner (Conj Q ®) = Sup ((st_conj_depth_conjunct o ®) ‘ Q)>
<imm_conj_depth_inner (Conj Q ®) = Sup ((imm_conj_depth_conjunct o ®) < Q)>
<max_pos_conj_depth_inner (Conj Q ®) = Sup ((max_pos_conj_depth_conjunct o &) ¢ Q)>
<max_neg_conj_depth_inner (Conj Q ®) = Sup ((max_neg_conj_depth_conjunct o ®) ¢ Q)>
<neg_depth_inner (Conj Q ®) = Sup ((neg_depth_conjunct o &) < Q)>
using <Q = {}> by auto
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hence
<modal_depth_srbb_inner (Conj Q ®) = 0>
<branch_conj_depth_inner (Conj Q ®) 0>
<inst_conj_depth_inner (Conj Q ®) =
<st_conj_depth_inner (Conj Q ®) = 0>
<imm_conj_depth_inner (Conj Q ®) = 0>
<max_pos_conj_depth_inner (Conj Q )
<max_neg_conj_depth_inner (Conj Q &)
<neg_depth_inner (Conj Q ®) = 0>
using <Q = {}> by (simp add: bot_enat_def)+

hence <expr_pr_inner (Conj Q ) = (E0 00000 0 0)>
using <Q = {}> by force

hence price: <expr_pr_inner (Conj Q ®) < e>
by auto

with Strat price True show 7thesis by auto

next

0>

0>
0>

case False
hence fa_q: <Vq € Q. Je’.
Some e’ = subtract_fn 0 0 1 0 0 0 0 0 e
A spectroscopy_moves (Defender_Conj p Q) (Attacker_Conjunct p q)
= subtract 0 01 00000
A spectro_att_wins e’ (Attacker_Conjunct p q)>
using moves local.conj_answer option.distinct(1)
by (smt (z3) option.sel)
have q_ex_e’: <Vq € Q. dJe’.
spectroscopy_moves (Defender_Conj p Q) (Attacker_Conjunct p q)
= subtract 0 01 00000
A Some e’ = subtract_fn 0 01 0 0 0 0 0 e
A spectro_att_wins e’ (Attacker_Conjunct p q)
A (. strategy_formula_conjunct (Attacker_Conjunct p q) e’ ¢
A expr_pr_conjunct ¢ < e’)>
proof safe
fix q
assume <q € Q>
then obtain e’ where e’_spec:
<Some e’ = subtract_fn 0 01 0 0 0 0 0 e>
<spectroscopy_moves (Defender_Conj p Q) (Attacker_Conjunct p q)
= subtract 0 0 1 0 0 0 0 0>
<spectro_att_wins e’ (Attacker_Conjunct p q)>
using fa_q by blast
hence <weak_spectroscopy_game.weight (Defender_Conj p Q) (Attacker_Conjunct p q) e
= Some e’>
by simp
then have <31). strategy_formula_conjunct (Attacker_Conjunct p q) e’ o
A expr_pr_conjunct ¢ < e’>
using Defender_Conj e’_spec
by (smt (verit, best) option.distinct(l) option.sel spectroscopy_position.simps(52))
thus <de’. spectroscopy_moves (Defender_Conj p Q) (Attacker_Conjunct p q)
= subtract 001 00000
AN Some e’ = subtract_fn 0 01 0 0 0 0 0 e
A spectro_att_wins e’ (Attacker_Conjunct p q)
A (J¢. strategy_formula_conjunct (Attacker_Conjunct p q) e’ ¢
A expr_pr_conjunct ¢ < e’)>
using e’_spec by blast
qed
hence <3®. Vq € Q.
spectro_att_wins (¢ —~E 00100 0 0 0) (Attacker_Conjunct p q)
A (strategy_formula_conjunct (Attacker_Conjunct pq) (¢ ~E00100000) (¢ q
A expr_pr_conjunct (P q) < (e ~-E00100000))>
by (metis (no_types, opaque_lifting) option.distinct(1l) option.inject)
then obtain & where IH:
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<Vq € Q. spectro_att_wins (¢ ~-E 001000 0 0) (Attacker_Conjunct p q)
A (strategy_formula_conjunct (Attacker_Conjunct pq) (¢ ~E00100000) (¢ @
A expr_pr_conjunct ($ q) < (e -E001000O00))> by auto
hence <strategy_formula_inner (Defender_Conj p Q) e (Conj Q ®)>
by (simp add: conj)
moreover have <expr_pr_inner (Conj Q ®) < e>
using IH expr_conj <Q # {}> q_ex_e’
by (metis (no_types, lifting) equalsOI option.distinct(1))
ultimately show 7thesis by auto
qed
next
case (Defender_Stable_Conj p Q)
hence cases:
<Vg’. spectroscopy_moves (Defender_Stable_Conj p Q) g’ # None —
(Je’. weak_spectroscopy_game.weight (Defender_Stable_Conj p Q) g’ e = Some e’
A\ spectro_att_wins e’ g’)
A ((dp’ q. g’ = Attacker_Conjunct p’ q) V (Ip’ Q’. g’ = Defender_Conj p’ Q’))>
by (metis (no_types, opaque_lifting)
spectroscopy_defender.elims(2,3) spectroscopy_moves.simps(35,36,37,38,74))
show 7case
proof (cases <Q = {}>)
case True
then obtain e’ where e’_spec:
<weak_spectroscopy_game.weight (Defender_Stable_Conj p Q) (Defender_Conj p Q) e
= Some e’>
<e’ =e-(E00010000)»
<spectro_att_wins e’ (Defender_Conj p Q)>
using cases local.empty_stbl_conj_answer
by (smt (verit, best) option.discI option.sel)
then obtain ¢ where ®_prop: <strategy_formula_inner (Defender_Conj p Q) e’ (Conj Q P)>
using conj True by blast
hence strategy: <strategy_formula_inner (Defender_Stable_Conj p Q) e (StableConj Q ®)>
by (simp add: True stable_conj)
have <E0 0010000 < e> using e’_spec
using option.sel True by fastforce
moreover have <expr_pr_inner (StableConj Q $) =E 000100 0 0>
using True by (simp add: bot_enat_def)
ultimately have <expr_pr_inner (StableConj Q ®) < e> by simp
with strategy show 7thesis by auto
next
case False
then obtain e’ where e’_spec:
<e’ =e-(E00010000)>
<Vq € Q. weak_spectroscopy_game.weight (Defender_Stable_Conj p Q)
(Attacker_Conjunct p q) e = Some e’
A spectro_att_wins e’ (Attacker_Conjunct p q)>
using cases local.conj_s_answer
by (smt (verit, del_insts) option.distinct(1l) option.sel)
hence IH: <Vq € Q. 3.
strategy_formula_conjunct (Attacker_Conjunct p q) e’ ¥ A
expr_pr_conjunct ¢ < e’>
using Defender_Stable_Conj local.conj_s_answer
by (smt (verit, best) option.distinct(1l) option.inject spectroscopy_position.simps(52))
hence <3®. Vq € Q.
strategy_formula_conjunct (Attacker_Conjunct p q) e’ (P q) A
expr_pr_conjunct (® q) < e’>
by meson
then obtain & where ®_prop: <Vq € Q.
strategy_formula_conjunct (Attacker_Conjunct p q) e’ (P q)
A expr_pr_conjunct (& q) < e’>
by blast
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have <E0 0010000 < e>
using e’_spec False by fastforce

hence <expr_pr_inner (StableConj Q ®) < e>
using expr_st_conj e’_spec ®_prop False by metis

moreover have <strategy_formula_inner (Defender_Stable_Conj p Q) e (StableConj Q ®)>
using ®_prop e’_spec stable_conj
unfolding e’_spec by fastforce

ultimately show 7thesis by auto

qed
qed force+
qed

lemma strategy_formulas_distinguish:
shows
< (strategy_formula g e o —>
(case g of
Attacker_Immediate p Q = distinguishes_from ¢ p Q
| Defender_Conj p Q = distinguishes_from ¢ p Q
| _ = True))
N
(strategy_formula_inner g e x —
(case g of
Attacker_Delayed p Q = (Q —»S Q) — distinguishes_from (Internal x) p Q
| Defender_Conj p Q = hml_srbb_inner.distinguishes_from x p Q
| Defender_Stable_Conj p Q = (Vq. = p — 7 q)
— hml_srbb_inner.distinguishes_from x p Q
| Defender_Branch p a p’ Q Qa =(p —a a p’)
— hml_srbb_inner.distinguishes_from x p (QUQa)
| _ = True))
A
(strategy_formula_conjunct g e ¢ —>
(case g of
Attacker_Conjunct p q = hml_srbb_conj.distinguishes 9 p q
| _ = True))>
proof (induction rule: strategy_formula_strategy_formula_inner_strategy_formula_conjunct.induct)
case (delay p Q e x)
then show 7case
by (smt (verit) distinguishes_from_def option.discI silent_reachable.intros(1)
silent_reachable_trans spectroscopy_moves.simps(l) spectroscopy_position.simps)
next
case (procrastination p Q e Xx)
from this obtain p’ where IH:
<spectroscopy_moves (Attacker_Delayed p Q) (Attacker_Delayed p’ Q) = id_up A
spectro_att_wins e (Attacker_Delayed p’ Q) A
strategy_formula_inner (Attacker_Delayed p’ Q) e x A
(case Attacker_Delayed p’ Q of Attacker_Delayed p Q =
Q —»S Q — distinguishes_from (hml_srbb.Internal x) p Q |
Defender_Branch p a p’ Q Qa = p —a p’ A Qa # {}
— hml_srbb_inner.distinguishes_from x p (Q U Qa) |
Defender_Conj p Q = hml_srbb_inner.distinguishes_from x p Q |
Defender_Stable_Conj p Q = (Vq. = p —7 @)
— hml_srbb_inner.distinguishes_from x p Q |
_ = True)> by fastforce
hence D: <Q —»S Q — distinguishes_from (hml_srbb.Internal x) p’ Q>
using spectroscopy_position.simps(53) by fastforce
from IH have <p —»p’>
by (metis option.discI silent_reachable.intros(1)
silent_reachable_append_7 spectroscopy_moves.simps(2))
hence <Q —»S Q — distinguishes_from (hml_srbb.Internal x) p Q> using D
by (smt (verit) silent_reachable_trans distinguishes_from_def hml_srbb_models.simps(2))
then show ?case by simp
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next
case (observation p Q e ¢ a)
then obtain p’ Q’ where IH:
<spectroscopy_moves (Attacker_Delayed p Q) (Attacker_Immediate p’ Q’)
= subtract 1 0000000 A
spectro_att_wins (¢ ~E 1000 0 0 0 0) (Attacker_Immediate p’ Q’) A
(strategy_formula (Attacker_Immediate p’ Q’) (¢ ~E10000000) ¢ A
(case Attacker_Immediate p’ Q’ of Attacker_Immediate p Q = distinguishes_from ¢ p Q
| Defender_Conj p Q = distinguishes_from ¢ p Q | _ = True)) A
pt—aap’ ANQ—aS a Q’> by auto
hence D: <distinguishes_from ¢ p’ Q’> by auto
hence <p’ E=SRBB ¢> by auto
have observation: <spectroscopy_moves (Attacker_Delayed p Q) (Attacker_Immediate p’ Q’)
= (if (Ja. p—~a ap’ A Q —aS a Q’) then (subtract 1 0 0 0 0 0 0 0) else None)>
for p p’ Q Q’ by simp
from IH have <spectroscopy_moves (Attacker_Delayed p Q) (Attacker_Immediate p’ Q’)
= subtract 1 0 0 0 0 0 0 0> by simp
also have <... #* None> by blast
finally have <(da. p —a a p’ A Q +—aS a Q’)> unfolding observation by metis
from IH have <p —a « p’> and <Q —aS «a Q’> Dby auto
hence P: <p [=SRBB (Internal (Obs « ¢))> using <p’ =SRBB ¢>
using silent_reachable.intros(1l) by auto
have <Q —»S Q@ — (Vq€Q. —(q ESRBB (Internal (Obs a ¢))))>
by (simp, meson D <Q —aS « Q’> distinguishes_from_def)
hence <Q —»S Q — distinguishes_from (hml_srbb.Internal (hml_srbb_inner.0Obs « ¢)) p Q>
using P by fastforce
then show 7case by simp
next
case (early_conj Q p Q’ e ¢)
then show 7case
by (simp, metis not_None_eq)
next
case (late_conj p Q e x)
then show 7case
using silent_reachable.intros(1)
by auto
next
case (conj Q p e ®)
then show 7case by auto
next
case (imm_conj Q p e )
then show 7case by auto
next
case (pos p q e X)
then show 7case using silent_reachable.refl
by (simp) (metis option.discI silent_reachable_trans)
next
case (neg p q e X)
then obtain P’ where IH:
<spectroscopy_moves (Attacker_Conjunct p q) (Attacker_Delayed q P’)
= Some (Me. Option.bind (subtract_fn 0 0 0 0 0 0 0 1 e) minl_7)>
<spectro_att_wins (the (minl1_7 (¢ —~E 00000 0 0 1))) (Attacker_Delayed q P’) A
strategy_formula_inner (Attacker_Delayed q P’)
(the (min1_ 7 (¢ ~E0000000 1)) x A
(case Attacker_Delayed q P’ of
Attacker_Delayed p Q = Q —»S Q — distinguishes_from (hml_srbb.Internal x) p Q
| Defender_Branch p a p’ Q Qa
= p —a p’ A Qa # {} — hml_srbb_inner.distinguishes_from x p (Q U Qa)
| Defender_Conj p Q = hml_srbb_inner.distinguishes_from x p Q
| Defender_Stable_Conj p Q
= (Vq. = p =7 q) — hml_srbb_inner.distinguishes_from x p Q
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| _ = True)> by fastforce
hence D: <P’ —»S P’ — distinguishes_from (hml_srbb.Internal x) q P’> by simp
have <{p} —»S P’> using IH(1) spectroscopy_moves.simps
by (metis (no_types, lifting) not_Some_eq)
have <P’ —»S P’ — p € P’> using <{p} —»S P’> by (simp add: silent_reachable.intros(1))
hence <hml_srbb_conj.distinguishes (hml_srbb_conjunct.Neg x) p q> using D <{p} —»S P’>
unfolding hml_srbb_conj.distinguishes_def distinguishes_from_def
by (smt (verit) lts_tau.silent_reachable_trans hml_srbb_conjunct_models.simps(2)
hml_srbb_models.simps(2) silent_reachable.refl)
then show 7case by simp
next
case (stable p Q e x)
then obtain Q’ where IH:
<spectroscopy_moves (Attacker_Delayed p Q) (Defender_Stable_Conj p Q’) = id_up>
<spectro_att_wins e (Defender_Stable_Conj p Q’) A
strategy_formula_inner (Defender_Stable_Conj p Q’) e x A
(case Defender_Stable_Conj p Q’ of
Attacker_Delayed p Q = Q —»S Q — distinguishes_from (hml_srbb.Internal x) p Q
| Defender_Branch p o p’ Q Qa
= p —a p’ A Qa # {} — hml_srbb_inner.distinguishes_from x p (Q U Qa)
| Defender_Conj p Q
= hml_srbb_inner.distinguishes_from x p Q
| Defender_Stable_Conj p Q
= (Vq. = p =7 q@ — hml_srbb_inner.distinguishes_from x p Q
| _ = True)> by auto
hence <(Pp’’. p 7 p’?)>
by (metis local.late_stbl_conj option.distinct(1))
from IH have <(V¥q. = p —7 q) — hml_srbb_inner.distinguishes_from x p Q’> by simp
hence <hml_srbb_inner.distinguishes_from x p Q’> using <ﬂp”. p —7T p’’> by auto
hence <hml_srbb_inner_models p x> by simp
hence <p |=SRBB (hml_srbb.Internal x)>
using lts_tau.refl by force
have <Q —»S Q — distinguishes_from (hml_srbb.Internal x) p Q>
proof
assume <Q —S Q>
have <(Vq € Q. —(q SRBB (hml_srbb.Internal x)))>
proof (clarify)
fix q
assume <q € Q> <(q FESRBB (hml_srbb.Internal x))>
hence <dq’. q — q’ A hml_srbb_inner_models q’ x> by simp
then obtain q’ where X: <q —» q’ A hml_srbb_inner_models q’ x> by auto
hence <q’ € Q> using <Q —S Q> <q € Q> by blast
then show <False>
proof (cases <q’ € Q’>)

case True — stable cases
thus <False> using X <hml_srbb_inner.distinguishes_from x p Q’>
by simp
next
case False — unstable cases

from IH have <strategy_formula_inner (Defender_Stable_Conj p Q’) e x> by simp
hence <3®. x = StableConj Q’ ®> using strategy_formula_inner.simps
by (smt (verit) spectroscopy_defender.simps(4,7)
spectroscopy_position.distinct(37,41) spectroscopy_position.inject(6))
then obtain ¢ where P: <x = (StableConj Q’ ®)> by auto
from TH(1) have <Q’ = {q € Q. (Fq’. q =7 q)}>
by (metis (full_types) local.late_stbl_conj option.distinct(1))
hence <dq’’. q’ —7 q’’> using False <q’ € Q> by simp
from X have <hml_srbb_inner_models q’ (StableConj Q’ ®)> using P by auto
then show 7thesis using <3q’’. q’ +—7 q’’> by simp
qed
qed
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thus <distinguishes_from (hml_srbb.Internal x) p Q>
using <p [=SRBB (hml_srbb.Internal x)> by simp
qed
then show 7case by simp
next
case (stable_conj Q p e ®)
hence IH: <Vq€ Q. hml_srbb_conj.distinguishes ($ q) p 9> by simp
hence Q: <Vq € Q. hml_srbb_conjunct_models p (® q)> by simp
hence <(Vq. - p —7 q) —> hml_srbb_inner.distinguishes_from (StableConj Q ®) p Q>
using IH by auto
then show 7case by simp
next
case (branch p Q e x)
then obtain p’ Q’ a Qo where IH:
<spectroscopy_moves (Attacker_Delayed p Q) (Defender_ Branch p a p’ Q’ Qa) = id_up>
<spectro_att_wins e (Defender_ Branch p a p’ Q’ Q) A
strategy_formula_inner (Defender_Branch p a p’ Q’ Qa) e x A
(case Defender_Branch p a p’ Q’ Qo of
Attacker_Delayed p Q = Q —S Q — distinguishes_from (Internal x) p Q
| Defender_Branch p o p’ Q Qa
= p —a o p’ — hml_srbb_inner.distinguishes_from x p (Q U Qa)
| Defender_Conj p Q = hml_srbb_inner.distinguishes_from x p Q
| Defender_Stable_Conj p Q
= (Vq. = p =7 q@ — hml_srbb_inner.distinguishes_from x p Q
| _ = True)> by blast
from IH(1) have <p —a « p’>
by (metis local.br_conj option.distinct(1))
from IH have <p +a « p’ — hml_srbb_inner.distinguishes_from x p (Q’ U Qu)> by simp
hence D: <hml_srbb_inner.distinguishes_from x p (Q’ U Qa)> using <p +—a o p’> by auto
from IH have <Q’ = Q - Qo A p—a ap’ A Q C Q>
by (metis (no_types, lifting) br_conj option.discI)
hence <Q=(Q’ U Qa)> by auto
then show 7case
using D silent_reachable.refl by auto
next
case (branch_conj p o p’ Q1 Qu e ¥ P)
hence Al: <Vqe€Ql. hml_srbb_conjunct_models p (P q)> by simp
from branch_conj obtain Q’ where IH:
<spectroscopy_moves (Defender Branch p o p’ Q1 Qa) (Attacker_Branch p’ Q’)
= Some (Ae. Option.bind (subtract_fn 0 1 1 00 0 0 O e) minl_6)>
<spectroscopy_moves (Attacker_Branch p’ Q’) (Attacker_Immediate p’ Q’)
= subtract 1 0 000000 A
spectro_att_wins (the (minl1 6 (¢ ~-E01100000)) -E1000000O0O0)
(Attacker_Immediate p’ Q’) A
strategy_formula (Attacker_Immediate p’ Q’)
(the (min1 6 (¢ ~E01100000) -E10000000) ¢ A
(case Attacker_Immediate p’ Q’ of
Attacker_Immediate p Q = distinguishes_from ¢ p Q
| Defender_Conj p Q = distinguishes_from ¢ p Q | _ = True)> by auto
hence <distinguishes_from % p’ Q’> by simp
hence X: <p’ =SRBB %> by simp
have Y: <Vq € Q’. —(q =SRBB ¢)> using <distinguishes_from ¢ p’ Q’> by simp
have <p —a o p’ — hml_srbb_inner.distinguishes_from (BranchConj « % Q1 ®) p (Q1 U Qu)>
proof
assume <p +—a « p’>
hence <p +—a «a p’> by simp
with IH(1) have <Qua —aS o Q’>
by (simp, metis option.discI)
hence A2: <hml_srbb_inner_models p (Obs « v)> using X <p +—a « p’> by auto
have A3: <Vq € (Q1 U Qa). hml_srbb_inner.distinguishes (BranchConj o ¢ Q1 ®) p q»
proof (safe)
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fix q
assume <q € Q1>
hence <hml_srbb_conj.distinguishes (® q) p q> using branch_conj(2) by simp
thus <hml_srbb_inner.distinguishes (BranchConj a ¢ Q1 ®) p g>
using Al A2 srbb_dist_conjunct_or_branch_implies_dist_branch_conjunction <q € Q1>
by blast
next
fix q
assume <q € Qa>
hence <—(hml_srbb_inner_models q (Obs « v))>
using Y <Qa —aS a Q’> by auto
hence <hml_srbb_inner.distinguishes (Obs « ) p q>
using A2 by auto
thus <hml_srbb_inner.distinguishes (BranchConj « % Q1 ®) p g>
using Al A2 srbb_dist_conjunct_or_branch_implies_dist_branch_conjunction by blast
qed
have <hml_srbb_inner_models p (BranchConj a ¥ Q1 ®)>
using A3 A2 by fastforce
with A3 show <hml_srbb_inner.distinguishes_from (BranchConj a % Q1 ®) p (Q1 U Quo)>

by simp
qed
then show 7case by simp
qed
end
end

9.3 Correctness Theorem

theory Silent_Step_Spectroscopy
imports
Distinction_Implies_Winning_Budgets
Strategy_Formulas
begin

We now only combine the results of Distinction_Implies_Winning_Budgets and Strategy_Formulas
to obtain the main characterization theorem of the weak spectroscopy game characterizing a whole
spectrum of weak equivalences.

context lts_tau
begin

theorem spectroscopy_game_correctness:
fixes e p Q
shows <(3d¢p. distinguishes_from ¢ p Q A expressiveness_price p < e)
<— spectro_att_wins e (Attacker_Immediate p Q)>
proof
assume <Jd¢. distinguishes_from ¢ p Q A expressiveness_price p < e>
then obtain ¢ where ¢_spec:
<distinguishes_from ¢ p Q> <expressiveness_price ¢ < e>
by blast
from distinction_implies_winning_budgets (_spec(l) have
<spectro_att_wins (expressiveness_price ¢) (Attacker_Immediate p Q)>
thus <spectro_att_wins e (Attacker_Immediate p Q)>
using weak_spectroscopy_game.win_a_upwards_closure ¢_spec(2) by simp
next
assume <spectro_att_wins e (Attacker_Immediate p Q)>
with winning_budget_implies_strategy_formula have
<Jyp. strategy_formula (Attacker_Immediate p Q) e ¢ A expressiveness_price ¢ < e>
by force
hence <Jdp. strategy_formula (Attacker_Immediate p Q) e ¢ A expressiveness_price p < e>
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by blast
thus <3J¢. distinguishes_from ¢ p Q A expressiveness_price ¢ < e>
using strategy_formulas_distinguish by fastforce
qed

An implicit result of the correctness theorem is that attacker wins on bigger Q imply wins on smaller
ones.

proposition attacker_subet_wins:
assumes
<spectro_att_wins e (Attacker_Immediate p Q)>
QP C Q>
shows
<spectro_att_wins e (Attacker_Immediate p Q’)>
using assms spectroscopy_game_correctness
unfolding distinguishes_from_def subset_iff
by meson

end

end
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